Index- Engineering Mathematics

Sl.No. Name of the Topic

- 1. Linear Algebra
- 2. Calculus
- 3. Differential Equations
- 4. Complex variables
- 5. Numerical Methods
- 6. Probability and Statistics
- 7. Transform Theory

1)开he_determinant of the matrix 8 1 7 2 2 0 2 0 0 6 1 is 9 1 Marks GATE-CSE/IT-2000() [A]4 [B] O [C]15 [D]20 2) Consider the following set of equations: x + 2y = 54x + 8y = 123x + 6y + 3z = 15This set 1 Marks GATE-CSE/IT-1998() [A] has unique solution [B] has no solutions [C] has finite number of solutions [D]has infinite number of solutions 3) Let $a = \begin{pmatrix}a & b \\ a & b \end{pmatrix}$ be an n-rowed square matrix and l_{12} be the matrix obtained by interchanging the first and second rows of the n-rowed Identify matrix. Then $A^{I_{12}}$ is such that its first 2 Marks GATE-CSE/IT-1997() [A] row is the same as its second row [B] row is the same as the second row of A [C] column is the same as the second column of A [D]row is all zero 4) Let Ax = b be a system of linear equations where A is an m \times n matrix and b is a m \times 1 column vector and X is a $n \times 1$ column vector of unknows. Which of the following is false? 1 Marks GATE-CSE/IT-1996() [A] The system has a solution if and only if, both A [B] If m < n and b is the zero vector, then the system and the augmented matrix [A b] have the same has infinitely many solutions. rank. [C]If m = n and b is non-zero vector, then the system [D] The system will have only a trivial solution when has a unique solution. m = n, b is the zero vector and rank (A) = n. $cos\theta sin\theta$ a 0] 5) The matrices $sin\theta = cos\theta$ and b commute under multiplication 2 Marks GATE-CSE/IT-1996() [A] if a = b or $\theta = n\pi$, is an integer [B] always [C]never [D] if a cos $\theta \neq b \sin \theta$ 6) _The rank of the following $(n_+ 1) \times (n_+ 1)$ matrix, where a is a real number is $\begin{bmatrix} 1 & a & a^2 \end{bmatrix}$ aⁿ 1 a a² aⁿ $1 a a^2 \dots a^n$ a a² .. 1 1 Marks GATE-CSE/IT-1995() [A]1 [B]2 [C]n [D]Depends on the value of a 7) A unit vector perpendicular to both the vectors a = 2i - 2j + k and b = 1 + j - 2k is: 2 Marks GATE-CSE/IT-1995() $[A]^{\frac{1}{\sqrt{3}}}(i+j+k)$ [B] 1 / 3 (i+j-k) $[D]^{\frac{1}{\sqrt{3}}}(i+i-k)$ [C]1/3(i-j-k) 8) Let A and B be real symmetric matrices of size $n \times n$. Then which one of the following is true? 1 Marks GATE-CSE/IT-1994() $[A] A A^T = I$ $[\mathbf{B}]A = -A^{T}$ $[D] (AB)^T = BA$ [C]AB = BA

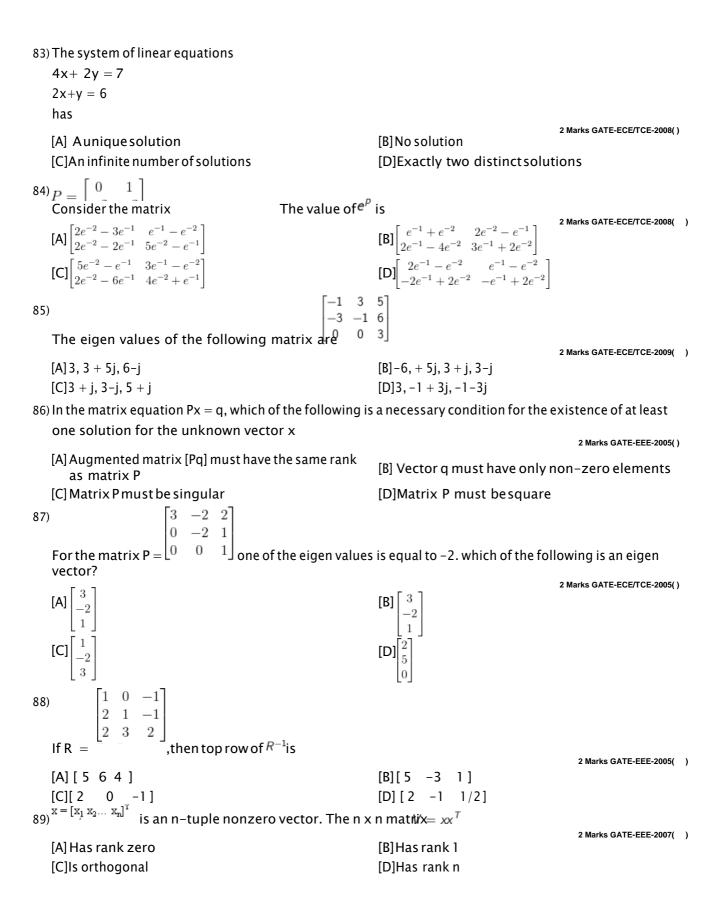
9) Therankof matrix		
Therankof matrix $\begin{bmatrix} 3 & 1 & 1 \end{bmatrix}$	is	1 Marks GATE-CSE/IT-1994()
[A]0 [C]2	[B] 1 [D]3	
elements above the diagonal a	re zero) of size n $ imes$ n, non zero e after another, starting from th	lower triangular matrices (i.e all the lements (i.e elements of the lower triangle) e first row, the index of the (i, j)th
[A] i+j [C]j+i(i-1)/2	[B] i+j-1 [D]i+j(j-1	1 Marks GATE-CSE/IT-1994()
11) The eigen vector(s) of the matrix $\begin{bmatrix} 0 & 0 & \alpha \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\alpha \neq 0$ is (are)		
[A](0,0 <i>φ</i>)	[B] (a, 0	1 Marks GATE-CSE/IT-1993()
[C](0,0,1)	[D](0,α,	
12) Consider the following system	m of linear equations	
	third columns of the coefficient i ystem of equations have infinit	
[A]0	[B] 1	2 Marks GATE-CSE/IT-2003()
[C]2	[D]Infini	ty many
13)	$\operatorname{rix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, a \neq 0$, is/are	
	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, a \neq 0$	
The eigen vector(s) of the mat		2 Marks GATE-ECE/TCE-1993()
$[A](0,0,\alpha)$	[B] (α, 0,	
[C](0,0,1)	$[D]^{0,\alpha,\beta}$	
14) $[A] = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$ is de triangular matrix [U]. The pro-	composed into a product of a lo operly decomposed [L] and [U] I	wer triangular matrix [L] and an upper matrices respectively are
$\begin{bmatrix} \mathbf{A} \mathbf{I} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \cdot & \cdot \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 0 & \cdot \end{bmatrix}$	$[\mathbf{B}]$	$\begin{bmatrix} 1 & 1 \\ 0 & t \end{bmatrix}$ 2 Marks GATE-EEE-2011()
$\begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 4 & -1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$	L J	$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 \\ 0 & -3 \end{bmatrix}$
15) A Matrix has eigenvalues – 1 an matrix is	d –2. The corresponding eigenv	ectors are $\begin{bmatrix} 1 \\ -1 \end{bmatrix}_{and} \begin{bmatrix} 1 \\ -2 \end{bmatrix}_{respectively.}$ The
E.e. a.t.	[1	2 Marks GATE-EEE-2013()
$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -2 \\ -1 & 0 \\ 0 & -2 \end{bmatrix}$	$\begin{bmatrix} B \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 0 \\ -2 \end{bmatrix}$	
16) Roots of the algebraic equatior	$X^3 + X^2 + X + 1 = 0$ are	· · · · · · · · · · · · · · · · · · ·
$[A]X^3 + X^2 + X + 1 = 0$ $[C](+1, -1, +1)$	[B](-1,- [D](0,0,	

17) A cubic polynomial with real coefficients 2 Marks GATE-EEE-2009() [B] may have up to three extrema and up to 2 zero [A] can possibly have no extrema and no zero crossings crossings [C]cannot have more than two extrema and more [D]will always have an equal number of extrema and than three zero crossings zero crossings 18) The trace and determinant of a 2^2 matrix are known to be -2 and -35 respectively. Its eigen values are 2 Marks GATE-EEE-2009() [A]-30 and -5 [B]-37 and -1 [C]-7 and 5 [D] 17.5 and -2 19) The determinant of the matrix 100 1 0 0 100 200 1 0 100 200 300 1 2 Marks GATE-EEE-2002() [A]100 [B] 200 [C]1 [D]300 20) A set of linear equations is represented by the matrix equation Ax=b. the necessary condition for the existence of a solution for this system is: 2 Marks GATE-EEE-1998() [A] A must be invertible [B] b must be linearly depended on the columns of A [C]b must be linearly independent of the columns of [D]None of the above Α The vector $\begin{bmatrix} 1\\2\\-1 \end{bmatrix}$ is an eigen vector of $A = \begin{bmatrix} -2 & 2 & -3\\2 & 1 & -6\\-1 & -2 & 0 \end{bmatrix}$. One of the given values A is 21) 2 Marks GATE-EEE-1998() [A]1 [B] 2 [D]-1 [C]5 2 $0 \ 0 \ -1$ $\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ -1 & 0 & 0 & 4 \end{bmatrix}$ sum of the eigenvalues of the matrix A is: 22) A =2 Marks GATE-EEE-1998() [A]10 [B] -10 [C]24 [D]22 ${}^{[C]24}_{23)}_{A} = \begin{bmatrix} 5 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 1 \end{bmatrix}$. The inverse of A is: 2 Marks GATE-EEE-1998() $\begin{bmatrix} \mathbf{B} \end{bmatrix} \begin{bmatrix} 5 & 0 & 2 \\ 0 & \frac{-1}{3} & 0 \\ 2 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} \frac{1}{5} & 0 & \frac{-1}{2} \\ 0 & \frac{1}{3} & 0 \\ -1 & \frac{2}{3} & 0 \end{bmatrix}$ $\begin{bmatrix} \mathsf{A} \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 0 & \frac{1}{3} & 0 \\ -2 & 0 & 5 \end{bmatrix}$ $[C] \begin{bmatrix} \frac{1}{5} & 0 & \frac{1}{2} \\ 0 & \frac{1}{3} & 0 \end{bmatrix}$ 24) A square matrix IS called singular, if its 2 Marks GATE-EEE-1997() [A] determinant is unity [B]determinant is zero [C]determinantt is infinity [D]rank is unity $S = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ IS 25) The inverse of the matrix 2 Marks GATE-EEE-1995() $[\mathsf{A}] \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ $[B] \begin{bmatrix} 0 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$ 0 1 1 1 0

26) A $^{5 imes7}$ matrix has all its entries equal to –a.the rank of the matrix is

26) A 5×7 matrix has all its entries equal to –a.the rank of	the matrix is	
[A] 7 [C] 1	[B] 5 [D]zero	2 Marks GATE-EEE-1994()
27) The eigen values of the matrix $\begin{bmatrix} a & 1 \\ a & 1 \end{bmatrix}$ are		2 Marks GATE-EEE-1994()
[A](a+1),0 [C](a-1),0 28) The inverse of the matrix $\begin{bmatrix} 3+2i & i\\ -i & 3-2i \end{bmatrix}_{is}$	[B] a,0 [D]0,0	
$\begin{bmatrix} A \end{bmatrix} \frac{1}{12} \begin{bmatrix} 3+2i & -i \\ i & 3-2i \end{bmatrix} \\ \begin{bmatrix} C \end{bmatrix} \frac{1}{14} \begin{bmatrix} 3+2i & -i \\ i & 3-2i \end{bmatrix}$	$\begin{bmatrix} \mathbf{B} \end{bmatrix} \frac{1}{12} \begin{bmatrix} 3 - 2i & -i \\ i & 3 + 2i \end{bmatrix} \\ \begin{bmatrix} \mathbf{D} \end{bmatrix} \frac{1}{14} \begin{bmatrix} 3 - 2i & -i \\ i & 3 + 2i \end{bmatrix}$	2 Marks GATE-CE-2010()
29) The eigenvalues of matrix $\begin{bmatrix} 9 & 5\\ 5 & 8 \end{bmatrix}$ are		2 Marks GATE-CE-2012()
[A]-2.42 and 6.86 [C]4.70 and 6.86	[B] 3.48 and 1 3.53 [D] 6.86 and 9.50	
30)[A] is a square matrix which is neither symmetric nor and difference of these matrices are defined as [S] = the following statements is TRUE?		pectively. Which of
[A] Both [S] and [D] are symmetric [C][S] is skew-symmetric and [D] is symmetric	[B]Both [S] and [D] are skew-sy [D][S] is symmetric and [D] is sk	
³¹⁾ If \vec{a} and \vec{b} are two arbitrary vectors. with magnitudes		equalto
31) If \vec{a} and \vec{b} are two arbitrary vectors. with magnitudes [A] $a^2b^2 - (\vec{a}.\vec{b})^2$	a and b, respectively $\left \vec{a} \times \vec{b} \right ^2$ will be $[B]_{ab} - \vec{a}.\vec{b}$	equal to 2 Marks GATE-CE-2011()
31) If \vec{a} and \vec{b} are two arbitrary vectors. with magnitudes [A] $a^2b^2 - (\vec{a}.\vec{b})^2$ [C] $a^2b^2 + (\vec{a}.\vec{b})^2$ 32) A square matrix B is skew-symmetric if [A] $B^T = -B$ [C] $B^{-1} = B$	a and b, respectively, $\left \vec{a} \times \vec{b} \right ^2$ will be $\begin{bmatrix} B \\ ab - \vec{a} \cdot \vec{b} \\ \begin{bmatrix} D \\ b \end{bmatrix} + \vec{a} \cdot \vec{b} \end{bmatrix}$ $\begin{bmatrix} B \\ B^T = B \\ \begin{bmatrix} D \\ B^{-1} = B^T \end{bmatrix}$	equalto
31) If \vec{a} and \vec{b} are two arbitrary vectors, with magnitudes [A] $a^2b^2 - (\vec{a}.\vec{b})^2$ [C] $a^2b^2 + (\vec{a}.\vec{b})^2$ 32) A square matrix B is skew-symmetric if [A] $B^T = -B$	a and b, respectively, $\left \vec{a} \times \vec{b} \right ^2$ will be $\begin{bmatrix} B \\ ab - \vec{a} \cdot \vec{b} \\ \begin{bmatrix} D \\ b \end{bmatrix} + \vec{a} \cdot \vec{b} \end{bmatrix}$ $\begin{bmatrix} B \\ B^T = B \\ \begin{bmatrix} D \\ B^{-1} = B^T \end{bmatrix}$	equal to 2 Marks GATE-CE-2011() 1 Marks GATE-CE-2009()
31) If \vec{a} and \vec{b} are two arbitrary vectors. with magnitudes [A] $a^2b^2 - (\vec{a}.\vec{b})^2$ [C] $a^2b^2 + (\vec{a}.\vec{b})^2$ 32) A square matrix B is skew-symmetric if [A] $B^T = -B$ [C] $B^{-1} = B$	a and b, respectively, $\left \vec{a} \times \vec{b} \right ^2$ will be $\begin{bmatrix} B \\ ab - \vec{a} \cdot \vec{b} \\ \begin{bmatrix} D \\ b \end{bmatrix} + \vec{a} \cdot \vec{b} \end{bmatrix}$ $\begin{bmatrix} B \\ B^T = B \\ \begin{bmatrix} D \\ B^{-1} = B^T \end{bmatrix}$	equal to 2 Marks GATE-CE-2011()
31) If \vec{a} and \vec{b} are two arbitrary vectors. with magnitudes [A] $a^2b^2 - (\vec{a}.\vec{b})^2$ [C] $a^2b^2 + (\vec{a}.\vec{b})^2$ 32) A square matrix B is skew-symmetric if [A] $B^T = -B$ [C] $B^{-1} = B$ 33) For a scalar function $f(x, y, z) = x^2 + 3y^2 + 2z^2$, the g [A] $2\vec{i} + 6\vec{j} + 4\vec{k}$	a and b, respectively, $\left \vec{a} \times \vec{b}\right ^2$ will be $\begin{bmatrix} B \\ ab - \vec{a} \cdot \vec{b} \\ [D] \ b + \vec{a} \cdot \vec{b} \end{bmatrix}$ $\begin{bmatrix} B \\ B^T = B \\ [D] B^{-1} = B^T \end{bmatrix}$ radient at the point P (1, 2, -1) is $\begin{bmatrix} B \\ 2\overline{i} + 12\overline{j} - 4\overline{k} \\ [D] \sqrt{56} \end{bmatrix}$	equal to 2 Marks GATE-CE-2011() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2009()
31) If \vec{a} and \vec{b} are two arbitrary vectors. with magnitudes [A] $a^2b^2 - (\vec{a}.\vec{b})^2$ [C] $a^2b^2 + (\vec{a}.\vec{b})^2$ 32) A square matrix B is skew-symmetric if [A] $B^T = -B$ [C] $B^{-1} = B$ 33) For a scalar function $f(x, y, z) = x^2 + 3y^2 + 2z^2$, the g [A] $2\vec{i} + 6\vec{j} + 4\vec{k}$ [C] $2\vec{i} + 12\vec{j} + 4\vec{k}$ 34) Solution for the system defined by the set of equations [A] $x=0$; $y=1$; $z=4/3$ [C] $x=1$; $y=1/2$; $z=2$	a and b, respectively, $\left \vec{a} \times \vec{b}\right ^2$ will be $\begin{bmatrix} B \\ ab - \vec{a} \cdot \vec{b} \\ [D] \ b + \vec{a} \cdot \vec{b} \end{bmatrix}$ $\begin{bmatrix} B \\ B^T = B \\ [D] B^{-1} = B^T \end{bmatrix}$ radient at the point P (1, 2, -1) is $\begin{bmatrix} B \\ 2\overline{i} + 12\overline{j} - 4\overline{k} \\ [D] \sqrt{56} \end{bmatrix}$	equal to 2 Marks GATE-CE-2011() 1 Marks GATE-CE-2009()
31) If \vec{a} and \vec{b} are two arbitrary vectors. with magnitudes [A] $a^2b^2 - (\vec{a}.\vec{b})^2$ [C] $a^2b^2 + (\vec{a}.\vec{b})^2$ 32) A square matrix B is skew-symmetric if [A] $B^T = -B$ [C] $B^{-1} = B$ 33) For a scalar function $f(x, y, z) = x^2 + 3y^2 + 2z^2$, the g [A] $2\vec{i} + 6\vec{j} + 4\vec{k}$ [C] $2\vec{i} + 12\vec{j} + 4\vec{k}$ 34) Solution for the system defined by the set of equations [A] $x=0; y=1; z=4/3$	a and b, respectively, $ \vec{a} \times \vec{b} ^2$ will be [B] $ab - \vec{a}.\vec{b}$ [D] $b + \vec{a}.\vec{b}$ [B] $B^T = B$ [D] $B^{-1} = B^T$ radient at the point P (1, 2, -1) is [B] $2\vec{i} + 12\vec{j} - 4\vec{k}$ [D] $\sqrt{56}$ 4y+3z=8; 2x-z=2; and 3x+2y=5 is [B] x=0; y=1/2; z=2	equal to 2 Marks GATE-CE-2011() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2009()
31) If \vec{a} and \vec{b} are two arbitrary vectors. with magnitudes [A] $a^2b^2 - (\vec{a}.\vec{b})^2$ [C] $a^2b^2 + (\vec{a}.\vec{b})^2$ 32) A square matrix B is skew-symmetric if [A] $B^T = -B$ [C] $B^{-1} = B$ 33) For a scalar function $f(x, y, z) = x^2 + 3y^2 + 2z^2$, the g [A] $2\vec{i} + 6\vec{j} + 4\vec{k}$ [C] $2\vec{i} + 12\vec{j} + 4\vec{k}$ 34) Solution for the system defined by the set of equations [A] $x=0$; $y=1$; $z=4/3$ [C] $x=1$; $y=1/2$; $z=2$ 35) The product of matrices $(PQ)^{-1}P$ is [A] P^{-1} [C] $P^{-1}Q^{-1}$	a and b, respectively, $ \vec{a} \times \vec{b} ^2$ will be [B] $ab - \vec{a}.\vec{b}$ [D] $b + \vec{a}.\vec{b}$ [B] $B^T = B$ [D] $B^{-1} = B^T$ radient at the point P (1, 2, -1) is [B] $2\vec{i} + 12\vec{j} - 4\vec{k}$ [D] $\sqrt{56}$ 4y+3z=8; 2x-z=2; and 3x+2y=5 is [B] x=0; y=1/2; z=2 [D]nonexistent [B] Q^{-1} [D] PQP^{-1}	equal to 2 Marks GATE-CE-2011() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2008()
31) If \vec{a} and \vec{b} are two arbitrary vectors. with magnitudes [A] $a^2b^2 - (\vec{a}.\vec{b})^2$ [C] $a^2b^2 + (\vec{a}.\vec{b})^2$ 32) A square matrix B is skew-symmetric if [A] $B^T = -B$ [C] $B^{-1} = B$ 33) For a scalar function $f(x, y, z) = x^2 + 3y^2 + 2z^2$, the g [A] $2\vec{i} + 6\vec{j} + 4\vec{k}$ [C] $2\vec{i} + 12\vec{j} + 4\vec{k}$ 34) Solution for the system defined by the set of equations [A] $x=0$; $y=1$; $z=4/3$ [C] $x=1$; $y=1/2$; $z=2$ 35) The product of matrices $(PQ)^{-1}P$ is [A] P^{-1} [C] $P^{-1}Q^{-1}$	a and b, respectively, $ \vec{a} \times \vec{b} ^2$ will be [B] $ab - \vec{a}.\vec{b}$ [D] $b + \vec{a}.\vec{b}$ [B] $B^T = B$ [D] $B^{-1} = B^T$ radient at the point P (1, 2, -1) is [B] $2\vec{i} + 12\vec{j} - 4\vec{k}$ [D] $\sqrt{56}$ 4y+3z=8; 2x-z=2; and 3x+2y=5 is [B] x=0; y=1/2; z=2 [D]nonexistent [B] Q^{-1}	equal to 2 Marks GATE-CE-2011() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2008()
31) If \vec{a} and \vec{b} are two arbitrary vectors. with magnitudes [A] $a^2b^2 - (\vec{a}.\vec{b})^2$ [C] $a^2b^2 + (\vec{a}.\vec{b})^2$ 32) A square matrix B is skew-symmetric if [A] $B^T = -B$ [C] $B^{-1} = B$ 33) For a scalar function $f(x, y, z) = x^2 + 3y^2 + 2z^2$, the g [A] $2\vec{i} + 6\vec{j} + 4\vec{k}$ [C] $2\vec{i} + 12\vec{j} + 4\vec{k}$ 34) Solution for the system defined by the set of equations [A] $x=0; y=1; z=4/3$ [C] $x=1; y=1/2; z=2$ 35) The product of matrices $(PQ)^{-1}P$ is [A] P^{-1} [C] $P^{-1}Q^{-1}$	a and b, respectively, $ \vec{a} \times \vec{b} ^2$ will be [B] $ab - \vec{a}.\vec{b}$ [D] $b + \vec{a}.\vec{b}$ [B] $B^T = B$ [D] $B^{-1} = B^T$ radient at the point P (1, 2, -1) is [B] $2\vec{i} + 12\vec{j} - 4\vec{k}$ [D] $\sqrt{56}$ 4y+3z=8; 2x-z=2; and 3x+2y=5 is [B] x=0; y=1/2; z=2 [D]nonexistent [B] Q^{-1} [D] PQP^{-1}	equal to 2 Marks GATE-CE-2011() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2009() 1 Marks GATE-CE-2008()

37) For a given matrix $\begin{bmatrix} 2 & -2 & 3 \\ -2 & -1 & 6 \\ 1 & 2 & 0 \end{bmatrix}$, one of the eigenvalues i	s 3.The other two eigenvalues are	
[A]2,-5 [C]2,5	[B]3, -5 [D]3, 5	2 Marks GATE-CE-2006()
38) The directional derivative of $f(x, y, z) = \frac{2x^2 + 3y^2 + z^2}{k}$ at the k is	he point P: (2, 1, 3) in the direction c	of the vector $a = i-2$
[A]-2.785 [C]-1.789 39) The Eigen values of the matrix $\begin{bmatrix} p \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ 2 & -5 \end{bmatrix}_{are}$	[B] - 2.145 [D]1.000	2 Marks GATE-CE-2006()
[A] –7 and 8 [C] 3 and 4 40) Consider the matrices $X_{(4,3)}, Z_{(2,3)}$ and $Y_{(4,3)}$. The order of $[P(X^TY)^{-1}P^T]^T$ will be	[B]–6 and 5 [D]1 and 2	2 Marks GATE-CE-2008()
$[A](2 \times 2)$ $[C](4 \times 3)$	[B] (3×3) [D] (3×4)	1 Marks GATE-CE-2005()
41) Consider a non-homogeneous system of linear equat determined system. Such a system will be	ions representing mathematically a	an over-
[A] consistent having a unique solution [C]	[B] consistent having a many sc [D]	1 Marks GATE-CE-2005() Diutions
inconsistent having a unique solution 42) The following simultaneous equations x+yz=3 x+2y+3z=4 x+4y+kz=6 will NOT have a uniqu e solution fork equal to	inconsistent having no solu	tion 2 Marks GATE-CE-2008()
[A]0 [C]6	[B]30 [D]7	
43) The inner (dot) product of two vectors \overline{P} and \overline{Q} is zero.		he two vectors is 2 Marks GATE-CE-2008()
[A]0 [C]90 44) The minimum and the maximum eigen values of the r	[B] 5 [D] 1 20 matrix $\begin{bmatrix} 1 & 1 & 3\\ 1 & 5 & 1\\ 3 & 1 & 1 \end{bmatrix}$ are -2 and 6, respect	ively. What is the
other eigen value?		1 Marks GATE-CE-2007()
[A] 5 [C] 1 45) For what values of α and β the following simultaneous $x + y + z = 5$; $x + 3y + +3z = 9$; $x + 2y + 3z = 9$	[B] 3 [D] – 1 ous equations have an infinite nur	nber of solutions?
		2 Marks GATE-CE-2007()
[A]2,7 [C]8,3 46) A velocity vector is given as $\vec{v} = 5xy\vec{i} + 2y^2\vec{j} + 3yz^2\vec{k}$ The divergence of this veloc	[B] 3,8 [D]72 city vector at (1,1,1) is	
[A]9 [C]14	[B]10 [D]15	2 Marks GATE-CE-2007()


1 2 47) 5 7 is The inverse of the 2 x 2 matrix 2 Marks GATE-CE-2007() $[\mathbf{B}]\frac{1}{3}\begin{bmatrix}7&2\\5&1\end{bmatrix}$ $[A]\frac{1}{3}\begin{vmatrix} -7\\5 \end{vmatrix}$ 7 -5 $[D]_{\overline{3}}^{1} \begin{bmatrix} -7\\ -5 \end{bmatrix}$ $[C]^{\frac{1}{3}}$ 1 48) Given that one root of the equation $x^3 - 10x^2 + 31x - 30 = 0$ is 5, the other two roots are 2 Marks GATE-CE-2007() [A] 2 and 3 [B] 2 and 4 [C]3 and 4 [D]-2 and -3 49) If A and Bare two matrices and if AB exists, then BA exists 2 Marks GATE-CE-1997() [A] if A has as many rows as B has columns [B] only if both A and B are square matrices [D]only if both A and B are symmetric [C]only if A and B are skew matrices 1 3 2 50) $0 \ 5 \ -6$ If the determinant of the matrix $\begin{bmatrix} 2 & 7 & 8 \end{bmatrix}$ is 26, then the determinant of the matrix $\begin{bmatrix} 1 & 3 & 2 \end{bmatrix}$ is 2 Marks GATE-CE-1997() [A]-26 [B]26 [C]0 [D]52 51) Real matrix $[A]_{3\times 1}$, $[B]_{3\times 3}$, $[C]_{3\times 5}$, $[D]_{5\times 3}$, $[E]_{5\times 5}$ and $[F]_{5\times 1}$ are given. Matrices [B] and [E] are symmetric. Following statements are made with respect to these matrices. I. Matrix product [F]'[C]'[B] C [F] is a scalar II. Matrix product $[D]^{T}[F]D$ is always symmetric With reference to above statements, which of the following applies? 1 Marks GATE-CE-2004() [A]Statement l is true but ll is false [B]StatementI is false but II is true [C]Both the statements are true [D]Both the statements are false -2° 52) The eigenvalues of the matr ix^2 2 Marks GATE-CE-2004() [A] are 1 and 4 [B] are -1 and 2 [C]are 0 and 5 [D]cannot be determined 53) Consider the system of equations $A_{(m \times n)}X_{(-1 \times t)} = 1_{(n \times 1)}$, where, 1 is a scalar. Let (I_i, X_i) be an eigen-pair of an eigen value and its corresponding eigen vector for real matrix A. Let I be a (n' n) unit matrix. Which one of the following statement is NOT correct? 2 Marks GATE-CE-2005() [A] For a homogeneous $n \times n$ system of linear [B] For matrix A^m , m being a positive integer, equations, (A-II) x = 0 having a nontrivial solution, (λ_i^m, X_i^m) will be the eigen-pair for all i the rank of (A-II) is less than n. [C] If $A^T = A^{-1}$, then $[1_i] = 1$ for all i $[D]If A^T = A$, then 1_i is for all i [4 2 1 3] 54) 6 3 4 7 [A] = $\begin{bmatrix} 2 & 1 & 0 & 1 \end{bmatrix}$, the rank of the matrix is **Given Matrix** 1 Marks GATE-CE-2003() [A]4 [B] 3 [C]2 [D]1 3 2 55) 1 2 6 Determinant of the following matrix is 10^{-10} 2 Marks GATE-CE-2001() [A]-76 [B]-28 [C]+28 [D]+72 56) If, A, B, C are square matrices of the same order, $(ABC)^{-1}$ is equal to

1 Marks GATE-CE-2000() $[A] C^{-1} A^{-1} B^{-1}$ $[B] C^{-1} B^{-1} A^{-1}$ $[C]A^{-1}B^{-1}C^{-1}$ $[D]A^{-1}C^{-1}B^{-1}$ 57) The product $\begin{bmatrix} P \end{bmatrix} \begin{bmatrix} Q \end{bmatrix}^T$ of the following two matrices [P] and [Q] is $\begin{bmatrix} P \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} Q \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 9 & 2 \end{bmatrix}$ 2 Marks GATE-CE-2001() $\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 32 & 24 \\ 56 & 46 \\ 35 & 22 \\ 61 & 42 \end{bmatrix}$ [B] 46 56 24 32 [D] ³² 56 24 46 The given values of the matrix $\begin{bmatrix} 5 & 3 \\ 2 & 9 \end{bmatrix}$ are 58) 2 Marks GATE-CE-2001() [A](5.13,9.42) [B](3.85, 2.93) [C](9.00, 5.00) [D](10.16, 3.84) 59) Consider the following two statements: I. The maximum number of linearly independent column vectors of a matrix A is called the rank of A. II. If A is an $n \times n$ square matrix, it will be non singular is rank A = n. With reference to the above statements, which of the following applies ? 1 Marks GATE-CE-2000() [A]Both the statements are false [B] Both the statements are true [C]I is true but II is false [D]I is false but II is true. 60) If A is any n x n matrix and k is a scalar, $|kA| = \alpha |A|$ where α is 2 Marks GATE-CE-1999() $[A]^k/n$ $[B]k^n$ $[C]n^k$ [D]kn0 1 0 61) 0 0 1 Inverse of matrix $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}_{i}$ 1 Marks GATE-CE-1997() [A] $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ 100 [B] 0 0 1 $\begin{smallmatrix}0&1&0\\0&0&1\end{smallmatrix}$ $\begin{smallmatrix}0&1&0\\1&0&0\end{smallmatrix}$ [C] 0 1 0 [D]₀₁₀ 0 0 1 100 62) If A is a real square matrix, then AA^{T} is 1 Marks GATE-CE-1998() [A] Unsymmetric [B]always symmetric [D]Some times symmetric [C]Skew-symmetric 63) In matrix algebra AS = AT (A, 5, T, a re matrices of appropriate order) implies S=T only if, 1 Marks GATE-CE-1998() [A] A is symmetric [B] A is singular [D]A is skew symmetric [C]A is non singular 64) The real symmetric matrix C corresponding to the Quadratic form $Q = 4x_1x_2 - 5x_{22}$. is 2 Marks GATE-CE-1998() $\begin{bmatrix} \mathbf{B} \\ 0 \\ 0 \\ -5 \\ 0 \\ 2 \\ \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -5 \\ 0 & 2 \\ 1 & -5 \end{bmatrix}$ $\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & -5 \\ 1 & 1 \\ 1 & -2 \end{bmatrix}$ 0 -165) 1 0 jis One pair of eigen vectors corresponding to the two eigenvalues of the matrix 2 Marks GATE-EIN/IN-2013() $\begin{bmatrix} \mathbf{B} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ -5 -3 $\begin{bmatrix} 1 & 0 \end{bmatrix}$ 66) A =I =2 = 0 $0 \ 1$ <u>,the value of A³ i</u> Given that

2 Marks GATE-EIN/IN-2012()

		2 Marks GATE-EIN/IN-2012()
[A]15A+12I	[B]19A+30I	
[C]17A+15I	[D]17A+21I	
67) The eigen values of a $(2x2)$ matrix X are -2 and -3 . The eigen values of a $(2x2)$ matrix $x = -2$ and -3 .	he eigenvalues of matrix $(X + I)^{-1}$	(X+5I) are 2 Marks GATE-EIN/IN-2009()
[A]-3,-4	[B] -1,-2	
[C]-1,-3	[D]-2,-4	
$[C]-1,-3$ $68) P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ The matrix rotates a vector about the axis	1	
The matrix $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ rotates a vector about the axi	is ^[1] by an angle of	
[A] 30°	[B] 60°	2 Marks GATE-EIN/IN-2009()
[C]90°	[D]120 ⁰	
69) $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \end{bmatrix}$		
69) $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 6 & 8 \end{bmatrix}$, is		
	[0] 1	1 Marks GATE-EIN/IN-2000()
[A]0 [C]2	[B] 1 [D]3	
70) For a singular matrix.	[0]5	
-		2 Marks GATE-EIN/IN-2000()
[A] Atleast one eigen value would be at the origin	[B] All eigen values would be	at the origin
[C]No eigenvalue would be at the origin.	[D]None	
71) Identify which one of the following is an eigenvect	tor of the matrix	
$A = \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}$		
	TE	1 Marks GATE-EIN/IN-2005()
$\begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} -1 & 1 \end{bmatrix}^T \\ \begin{bmatrix} \mathbf{C} \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix}^T \end{bmatrix}$	$\begin{bmatrix} \mathbf{B} \end{bmatrix} \begin{bmatrix} 3 & -1 \end{bmatrix}^T \\ \begin{bmatrix} \mathbf{D} \end{bmatrix} \begin{bmatrix} -2 & 1 \end{bmatrix}^T$	
	$[D]^{[-2]}$	
72) For a given $^{2 imes 2}$ matrix A, it is observed that		
$A\begin{bmatrix}1\\-1\end{bmatrix} = -\begin{bmatrix}1\\-1\end{bmatrix}$ and $A\begin{bmatrix}1\\-2\end{bmatrix} = -2\begin{bmatrix}1\\-2\end{bmatrix}$		
L^{-1} L^{-1} and L^{-2} L^{-2} Then matrix A is		
		2 Marks GATE-EIN/IN-2006()
$\begin{bmatrix} \mathbf{A} \end{bmatrix} A = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$	$\begin{bmatrix} \mathbf{B} \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$	
$[\mathbf{C}]^{A} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$	$\begin{bmatrix} \mathbf{B} \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$ $\begin{bmatrix} \mathbf{D} \end{bmatrix} A = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix}$	
73) ^A E $[\mathbf{\hat{e}}_{ij}], 1 \le i, j \le n$, with $n \ge 3$ and $a_{ij} - i, j$. Then the rank	ofAis	
[A]0	[B] 1	2 Marks GATE-EIN/IN-2007()
[C]n-1	[D]n	
74) Rank of the matrix given below is	[0]	
$\begin{bmatrix} 3 & 2 & -9 \\ -6 & -4 & 18 \\ 12 & 8 & -36 \end{bmatrix}$		
[A] 1	[B] 2	1 Marks GATE-ME-1999()
[C]3	[D]√2	
75) $\begin{bmatrix} -4 & 2 \\ 4 & 3 \end{bmatrix}$, the eigen vector is		
	2	Marks GATE-ECE/TCE-2005()
$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}_{a}$	$\begin{bmatrix} B \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ $\begin{bmatrix} D \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$	
$\left[C\right]_{-1}^{2}$	$\left[D\right]_{2}^{-1}$	

76) $A = \begin{bmatrix} 2 & -0.1 \\ 0 & 3 \end{bmatrix} \text{ and } A^{-1} = \begin{bmatrix} 1/2 & a \\ 0 & b \end{bmatrix}. \text{ Then } (a+b) =$ 2 Marks GATE-ECE/TCE-2005() [A]7/20 [B]3/20 [C]19/20 [D]11/20 $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}, \text{ then the value of } \begin{bmatrix} AA^T \end{bmatrix}^{-1} \text{ is }$ 77) **Given an orthogonal matrix** $\begin{bmatrix} \mathbf{B} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ \begin{bmatrix} 1 \\ \frac{1}{4} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix}$ 2 Marks GATE-ECE/TCE-2005() 0 0 0 $[A] \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix}$ $\begin{bmatrix} \frac{1}{4} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$ $[C] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ 0010 0001 1 1] 78) 1 $-1 \ 0$ $1 \quad 1 \mid_{i}$ The rank of the matrix 2 Marks GATE-ECE/TCE-2006() [A]0 [B] 1 [C]2 [D]3 79) The Eigen values and the corresponding Eigen vectors of a 2 x 2 matrix are given by **Eigen value Eigen vector** $V_1\begin{bmatrix}1\\1\end{bmatrix}$ $\lambda_1 = 8$ $\lambda_2 = 4^{V_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}}$ The matrix is 2 Marks GATE-ECE/TCE-2006() [A] ⁶ ² 2 ⁶ [B] ⁴ ⁶ ⁶ ⁴ [D] ⁴ ⁸ [C]² 4² [D] 4 2 80) [101] For the matrix $\begin{bmatrix} 2 & 4 \end{bmatrix}$ the given value corresponding to the eigen vector $\begin{bmatrix} 101\\101 \end{bmatrix}$ is 2 Marks GATE-ECE/TCE-2006() [A]2 [B]4 [C]6 [D]8 81) It is given that X_1, X_2, \dots, X_M are M non-zero orthogonal vectors. The dimension of the vector space spanned by the 2M vectors $X_1, X_2, ..., X_M, -X_1, -X_2, ..., -X_M$ is 2 Marks GATE-ECE/TCE-2007() [A] 2M [B] M + 1 [D]dependent on the choice of X_1, X_2, \dots, X_M [C]M $P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$ are nonzero, and one of its eigenvalues is zero. 82) All the four entries of the 2 x 2 matrix Which of the following statements is true? 2 Marks GATE-ECE/TCE-2008() $[A] P_{11} P_{22} - P_{12} P_{21} = 1$ $[\mathbf{B}]P_{11}P_{22} - P_{12}P_{21} = -1$ $[D]P_{11}P_{22} + P_{12}P_{21} = 0$ $[\mathbf{C}]P_{11}P_{22} - P_{12}P_{21} = 0$

90) A loaded dice has following probability distribution of occurrences

Dice value	1	2	3	4	5	б
Probability	1⁄4	1/8	1/8	1/8	1/8	1/4

If three identical dice as the above are thrown, the probability of occurrence of values 1, 5 and 6 on the three dice is 2 Marks GATE-EEE-2007()

[A] Same as that of occurrence of 3, 4, 5 [C]1/128

[B]Same as that of occurrence of 1,2,5 [D]5/8

91) Let x and y be two vectors in a 3 dimensional space and $\langle x, y \rangle$ denote their dot product. Then the determinant

[A] Is zero when x and y are linearly independent

[C] Is non-zero for all non-zero x and y

[B] Is positive when x and y are linearly independent [D]Is zero only when either x or y is zero

2 Marks GATE-EEE-2007()

2 Marks GATE-EEE-2007()

2 Marks GATE-EEE-2008()

2 Marks GATE-EEE-2008()

- 92) The linear operation L(x) is defined by the cross product $L(x) = b \times X$ where
- $b = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{\prime}$ and $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^{\prime}$ are three dimensional vectors. The 3 x 3 matrix M of this operation satisfies

$$L(x) = M \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

93)

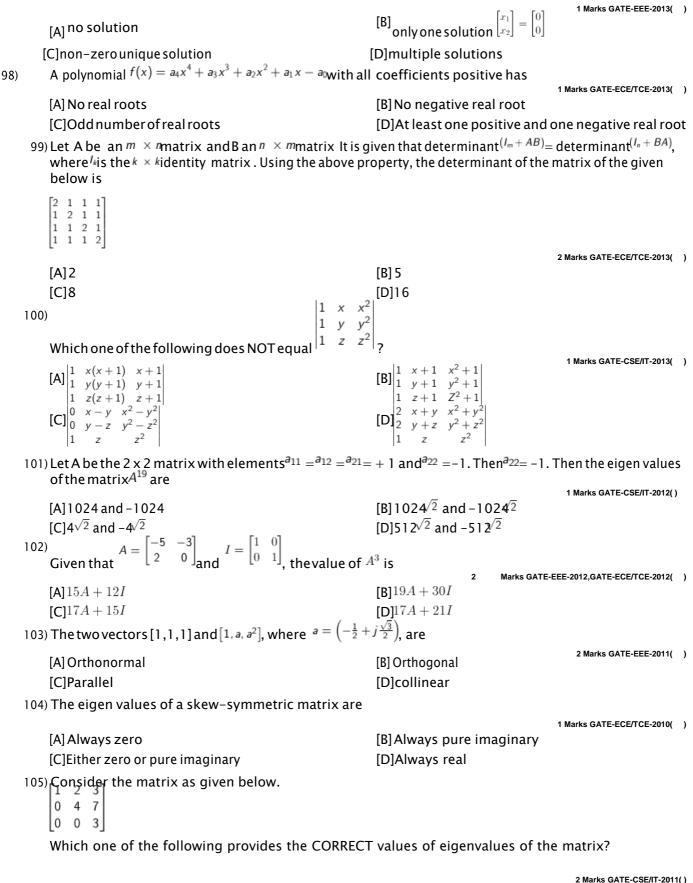
Then the eigen value of M are

[A]0 + 1, -1[B]1,-1,1 [D]_{i, -i,0} [C]i, -i, 1 The characteristic equation of a (3 x 3) matrix P is defined as $a(\lambda) = |\lambda I - P| = \lambda^3 + \lambda^2 + 2\lambda + 1 = 0$

If I denotes identity matrix then the inverse of matrix P will be

 $[B](P^2 + P + i)$ $[A](P^2 + P + 2i)$ $[D^+(P^2 + P + 2i)]$ $[C] - (P^2 + P + i)$

94) If the rank of a (5 x 6) matrix Q is 4 then which one of the following statements is correct?


[A] Q will have four linearly independent rows and four linearly independent columns [C]^{QQ} will be invertible

- [B] Q will have for linearly independent rows and five linearly independent columns $[D]Q^T Q$ will be invertible
- 95) A is m x n full rank matrix with m > n and l is an identity matrix. Let matrix $A' = (A^T A)^{-1} A^T$. Then which one of the following statement is False? 2 Marks GATE-EEE-2008()

 $[\mathbf{B}](AA')^2 = AA'$ [A] AA'A = A[C]AA' = I[D]AA'A = A96) Let P be a 2 X 2 real orthogonal matrix and \vec{k} s a real vector $[x_1, x_2]^T$ with length $|| \vec{X} || = (x_1^2 + x_2^2)^{1/2}$. Then which of one of the following statement is correct? 2 Marks GATE-EEE-2008() $[A] \parallel P\vec{X} \parallel \leq \parallel \vec{X} \parallel where at least one vector$ $[B] \stackrel{|| P\vec{X} \parallel \leq \parallel \vec{X} \parallel}{=} for all vectors \vec{X}$ satisfies $|| P\vec{X} || < || \vec{X} ||$

 $[C] \parallel P\vec{X} \parallel \geq \parallel \vec{X} \parallel$ where at least one vector satisfies $|| P\vec{X} || > || \vec{X} ||$

- [D]No relationship can be established between $\|\vec{X}\|$ and $\|P\vec{X}\|$
- The equation $\begin{bmatrix} 2 & -2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has 97)

[A]1,4,3	[B] 3,7,3
[C]7,3,2	[D]1,2,3

106) $P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ is	
[A][-111] [C][1-12] 107) For the set of equations, $x_1 + 2x_2 + x_3 + 4x_4 = 2$ and $3x_4$ The following statement is true	
[A] Only the trivial solution $x_1 = x_2 = 3x_3 = x_4 = 0$ exists [C]A unique non-trivial solution exists 108) Consider the following matrix $A = \begin{bmatrix} 2 & 3 \\ x & y \end{bmatrix}$ If the eigenvalues of A are 4 and 8, then	2 Marks GATE-EEE-2010() [B]There are no solutions [D]Multiple non-trivial solutions exist
[A] $x = 4, y = 10$ [C] $x = -3, y = 9$ 109) The system of equations x + y + z = 6 x + 4y + 6z = 20 $x + 4y + \lambda z = \mu$ has NO solution for values of λ and μ given by	2 Marks GATE-CSE/IT-2010() [B] $x = 5, y = 8$ [D] $x = -4, y = 10$ 2 Marks GATE-ECE/TCE-2011()
[A] $\lambda = 6, \mu = 20$ [C] $\lambda \neq 6, \mu = 20$ 110) The elgen values of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}_{are}$	[B] $\lambda = 6, \mu \neq 20$ [D] $\lambda \neq 6, \mu \neq 20$ 2 Marks GATE-ECE/TCE-1998()
[A] 1, 1 [C]j, -j 111) The rank of the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ is	[B]-1,-1 [D]1,-1
 [A] 4 [C] 1 112) Consider the following statements: S1: The sum of two singular n × n matrices may be no S2: The sum of two n × n non-singular matrices may Which of the following statements is correct? 	
 [A] S1 and S2 are both true [C]S1 is false, S2 is true 113) Suppose the adjacency relation of vertices in a graph following queries cannot be expressed by a relatio 	nal algebra expression of constant length?
[A] List of all vertices adjacent to a given vertex [C]List all vertices which belong to cycles of less than three vertices	1 Marks GATE-CSE/IT-2001() [B]List all vertices which have self loops [D]List all vertices reachable from a given vertex
 114) Among the following, the pair of vectors orthogona [A][3,4,7], [3,4,7] [C][1,0,2], [0,5,0] 115) In the Gauss elimination method for solving a system 	2 Marks GATE-ME-1995() [B][1,0,0],[1,1,0] [D][1,1,1],[-1,-1,-1]

to


		1 Marks GATE-ME-1996()
[A] diagonal matrix	[B]lower triangular matrix		
[C]uppertriangular matrix	[D]singular matrix		
116) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$			
The eigen values of [1 1 1] are			
[A]0,0,0	[B] 0,0,1	2 Marks GATE-ME-1996()
[C]0,0,3	[D]1,1,1		
117) The eigenvalues of a symmetric matrix are all			
		1 Marks GATE-ME-2013()	
[A] complex with non-zero positive imaginary part.	[B] complex with non-zero negation	tive imaginary par	rt.
[C]real.	[D]pure imaginary.		
118) Choose the CORRECT set of functions, which are li	nearly dependent.	1 Marks GATE-ME-2013()
[A] sin x , sin ² x and cos ² x	[B] cos x , sin x and tan x		
$[C]\cos 2x$, sin^2x and cos^2x	[D]cos 2x , sin x and cos x		
The eigen values of the matrix $\begin{bmatrix} 5 & 3 \\ 3 & -3 \end{bmatrix}$ are			
meeigenvalues of mematrix are		2 Marks GATE-ME-1999()
[A]6	[B] 5		
[C]-3	[D]-4		
120) Consider the system of equations given below:			
$\begin{array}{c} x+y=2\\ 2x+2y=5 \end{array}$			
This system has			
[A] one solution	[B]no solution	1 Marks GATE-ME-2001()
[C]infinite solutions	[D]four solutions		
121) The following set of equations has			
3x+2y+z = 4			
x-y+z=2			
-2x+2z=5		2 Marks GATE-ME-2002()
[A] no solution	[B]aunique solution		
[C]multiple solutions	[D]an inconsistency.		
122) The rank of a 3 x 3 matrix $C(=AB)$, found by multiplyin	nganon-zero column matrix A of s	size3x1anda	
non-zero row matrix B of size 1x3 is		2 Marks GATE-ME-2001()	
[A]0	[B] 1		
[C]2	[D]3		
123) For the matrix $\begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$ the eigen values are			
For the matrix ¹¹ ⁴ the eigen values are		1 Marks GATE-ME-2003()
[A] 3 and -3	[B]-3 and -5		
[C]3 and 5	[D]5 and0		
124) The vector field. $\vec{F} = x\vec{i} - y\vec{j}$ (where \vec{i} and \vec{j} are unit vec	tors) is		
[A] divergence free, but not irrotational	[B] irrotational, but not divergen	2 Marks GATE-ME-2003()
[C] divergence free and irrotational	[D]neither divergence free nor in		
125) [2 2]			
125) One of the eigen vectors of the matrix $\mathbf{A} = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$ is			
$[A] \left\{ \begin{smallmatrix} 2\\ -1 \end{smallmatrix} \right\}$	$[B] \begin{cases} 2 \\ 1 \end{cases}$	2 Marks GATE-ME-2010()
$\begin{bmatrix} \nu & \mathbf{y} \\ -1 \end{bmatrix}$	[0] $[1]$		
[C]{1}	[D] <u>{</u> _1}		

126) Eigenvalues of a real symmetric matrix are always 1 Marks GATE-ME-2011() [A] positive [B] negative [C]real [D]complex For the matrix $A = \begin{bmatrix} 5 & 3 \\ 1 & 3 \end{bmatrix}$ 127) , ONE of the normalized eigen vectors is given as 2 Marks GATE-ME-2012() [B] _ [A] [C] 128)x + 2y + z = 42x + y + 2x = 5x-y+z = 1The system of algebraic equations given above has 2 Marks GATE-ME-2012() [B] only the two solutions of (x = 1, y = 1, z = 1) and [A] a unique solution of x = 1, y = 1 and z = 1. (x = 2, y = 1, z = 0).[C]infinite number of solutions. [D]no feasible solution. $\begin{bmatrix} \frac{3}{5} \\ X \end{bmatrix}$, the transpose of the matrix is equal to the inverse of the matrix $[M]^{T} = [M]^{-1}$ The 129) [M] =For a matrix value of x is given by 1 Marks GATE-ME-2009() $[B]_{4}^{-\frac{3}{5}}$ $[D]_{5}^{-\frac{3}{5}}$ $[A]_{\frac{3}{5}}^{-\frac{4}{5}}$ $[C]_{\frac{5}{5}}^{3}$ 130) The sum of the eigen values of the given matrix 151 3 1 1 1 Marks GATE-ME-2004() [A]5 [B]7 [C]9 [D]18 131) For which value of r will the matrix given below become singular? 4 0 2 12 6 0 2 Marks GATE-ME-2004() [A]4 [B]6 [C]8 [D]12 132) A is a 3×4 real matrix and Ax = b is an inconsistent system of equations. The highest possible rank of A is 1 Marks GATE-ME-2005() [A]1 [B] 2 [C]3 [D]4 [5 0 0 0 133) 0 500 0 $\begin{smallmatrix} 0 & 2 & 1 \\ 0 & 3 & 1 \end{smallmatrix}$ 1 7 Which one of the following is an eigenvector of the matrix 2 Marks GATE-ME-2005() [A] [B] 0 0 [C] [D 0

134) Match the items in columns I and II. Column I Column II P. Singular matrix 1. Determinant is not Q. Non-square matrix 2. Determinant is always one R. Real symmetric matrix 3, Determinant is zero S. Orthogonal matrix 4. Eigen values are always real 5, Eigen values are not defined 2 Marks GATE-ME-2006() [A]P-3,Q-1,R-4,S-2 [B]P-2, Q-3, R-4, S-1 [C]P-3, Q-2, R-5, S-4 [D]P-3, Q-4, R-2.S-1. 135) Multiplication of matrices E and F is G. Matrices. E and G are cosθ 0 E =sinθ G =0 1 0 $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ What is the matrix F? 0 0 1 and 2 Marks GATE-ME-2006() $cos\theta - sin\theta 0$ $sin\theta$ cost 0 [A] $[B]|_{-\cos\theta} \sin\theta = 0$ sinθ cosθ 0 0 0 0 0 1 cosθ sinθ 0 $\sin\theta = \cos\theta 0$ [C] $-sin\theta cos\theta 0$ $\cos\theta$ sinθ 0 0 1 0 0 0 1 [1 2] 4 136) 306 The matrix $\lfloor 1 \rfloor$ 1 ^{*p*}has one eigenvalue equal to 3. The sum of the other two eigenvalues is 1 Marks GATE-ME-2008() [A] p [B]p-1 [C]p - 2 [D]p - 3 137) If a square matrix A is real and symmetric, then the Eigen values 1 Marks GATE-ME-2007() [A] are always real [B] are always real and positive [D]occur in complex conjugate pairs. [C] are always real and non-negative 138) For what value of a, if any, will the following system of equations in x, y and. z have a solution? 2x + 3y = 4x+Y+z=4x+2y-z=a2 Marks GATE-ME-2008() [A] Any real number [B]0 [C]1 [D]There is no such value. 1 2 139) The eigenvectors of the matrix $\begin{bmatrix} 0 & 2 \end{bmatrix}$ are written in the form $\begin{bmatrix} a \end{bmatrix}$ and $\begin{bmatrix} b \end{bmatrix}$. What is a+b? 2 Marks GATE-ME-2008() [A]0 [B]1/2 [C]1 [D]2 140) The area of a triangle formed by the tips of vectors \bar{a} , \bar{b} and \bar{c} is 2 Marks GATE-ME-2007() $[\mathbf{A}]^{\frac{1}{2}} \left| (\bar{a} - \bar{b}) \times (\bar{a} - \bar{c}) \right|$ $[B] \frac{1}{2} |(\bar{a} - \bar{b}) \times (\bar{a} - \bar{c})|$ $[\mathbf{C}]^{\frac{1}{2}|\bar{a}\times\bar{b}\times\bar{c}|}$ $[D]^{\frac{1}{2}(\overline{a} \times \overline{b}).\overline{c}}$ 141) The number of linearly independent Eigen vectors of $\begin{bmatrix} 0 & 2 \end{bmatrix}$ is 2 Marks GATE-ME-2007() [A]0 [B] 1 [C]2 [D]infinite Statement for Linked answer Q142 and Q143 is given below

$$P = \begin{bmatrix} -10\\1\\3 \end{bmatrix}^{T}, Q = \begin{bmatrix} -2\\-5\\9 \end{bmatrix}, R = \begin{bmatrix} 2\\-7\\12 \end{bmatrix}$$
are three vectors
An orthogonal set of vectors having a span that contains P, Q, R

is 'Y

2 Marks GATE-EEE-2006,GATE-EEE-2006()

2 Marks GATE-EEE-2006()

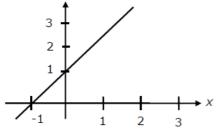
143) The following vector is linearly dependent upon the solution to the previous problem

144) Cayley - Hamilton Theorem states that a square matrix satisfies its own characteristic equation. Consider matrix

matrix						
-3	2					
[-1]	0					
	$\begin{bmatrix} -3 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -3 & 2 \\ -1 & 0 \end{bmatrix}$				

A satisfies the relation

	2 Marks GATE-EEE-2007,GATE-EEE-2007()
[B]A2 + 2A + 2I = 0		
[D]exp(A)=0		
	2 Marks GATE-EEE-2007()
[B] 309 A + 104 I		,
[D]exp (9A)		
	$[D]exp(A) = 0$ $[B]_{309}A + 1041$	[D]exp(A) = 0 2 Marks GATE-EEE-2007([B] 309 A + 104 I

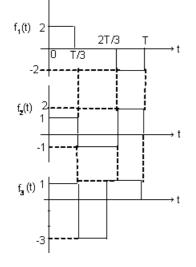

Key Paper									
1.	Α	2.	в	3.	С	4.	С	5.	Α
6.	Α	7.	Α	8.	D	9.	С	10.	С
11.	Α	12.	В	13.	Α	14.	D	15.	D
16.	В	17.	С	18.	С	19.	с	20.	В
21.	с	22.	Α	23.	Α	24.	В	25.	D
26.	с	27.	Α	28.	В	29.	В	30.	D
31.	Α	32.	Α	33.	в	34.	D	35.	Α
36.	в	37.	в	38.	С	39.	в	40.	Α
41.	Α	42.	D	43.	С	44.	в	45.	Α
46.	D	47.	Α	48.	Α	49.	Α	50.	Α
51.	Α	52.	С	53.	Α	54.	С	55.	в
56.	в	57.	Α	58.	D	59.	в	60.	Α
61.	Α	62.	в	63.	Α	64.	Α	65.	Α
66.	В	67.	Α	68.	Α	69.	С	70.	Α
71.	В	72.	в	73.	В	74.	Α	75.	С
76.	Α	77.	С	78.	С	79.	Α	80.	С
81.	с	82.	С	83.	В	84.	D	85.	D
86.	Α	87.	D	88.	В	89.	В	90.	с
91.	D	92.	D	93.	D	94.	Α	95.	Α
96.	В	97.	D	98.	D	99.	в	100.	Α
101.	D	102.	В	103.	В	104.	С	105.	Α
106.	В	107.	D	108.	D	109.	В	110.	D
111.	с	112.	С	113.	С	114.	С	115.	с
116.	с	117.	С	118.	С	119.	Α	120.	В
121.	В	122.	A	123.	С	124.	С	125.	Α
126.	с	127.	В	128.	с	129.	Α	130.	В
131.	Α	132.	С	133.	Α	134.	Α	135.	С
136.	с	137.	Α	138.	D	139.	в	140.	в
141.	В	142.	D	143.	D	144.	Α	145.	Α

1) The function f(t) has the Fourier Transform $g(\omega)$. The Fourier Transform $ff(t)g(t) = \left(\int_{-\infty}^{\infty} g(t)e^{-j\omega t}dt\right)_{is}$

2) Which of the following improper integrals is (are) convergent?

$$[A] \int_0^1 \frac{\sin x}{1 - \cos x} dx$$
$$[C] \int_0^\infty \frac{x}{1 + x^2} dx$$

3) The following plot shows a function y which varies linearly with x . The value of the integral $I = \int_1^2 y \, dx$ is


2 Marks GATE-ECE/TCE-2007()

2 Marks GATE-ECE/TCE-1993()

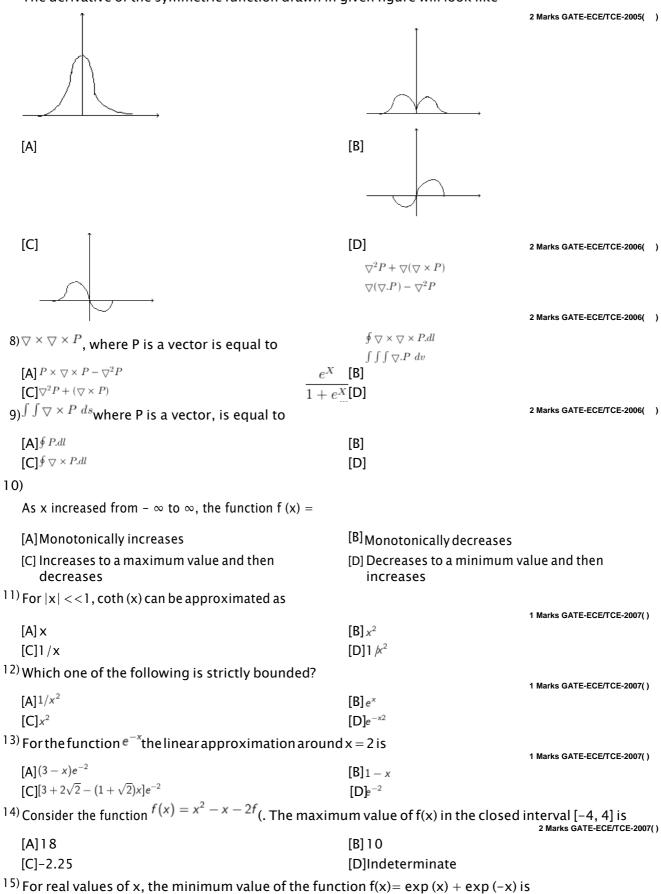
[B]2.5

4) Three function $f_{k}(t)$, $f_{2}(t)$ and $f_{3}(t)$ which are zero outside the interval [0, T] are shown in the figure.

Which of the following statements is correct ?

[A] $f_1(t)$ and $f_2(t)$ are orthogonal	[B] $f_1(t)$ and $f_3(t)$ are orthogonal	
[C] ^f 2 ^(t) and ^{f3 (t)} are orthogonal	$[D]^{f_1(t)}$ and $^{f_2(t)}$ are orthogonal	
5)If $X = \sqrt{-1}$, then the value of X^X is		
	1 Marks GATE-EEE-2012,GATE-ECE/TCE-2012()	
$\left[A\right]e^{-\frac{\pi}{2}}$	$[B] e^{\frac{\pi}{2}}$	
[C]x	[D]1	
6) $I = \frac{1}{\sqrt{2\pi}} \int_0^\infty exp\left(-\frac{X^2}{8}\right) dX$		
The value of the integral $\sqrt{2\pi J_0}$ $\sqrt{8 J_0}$		
	2 Marks GATE-ECE/TCE-2005()	
[A] 1	[B] π	
[C]2	[D]2π	

2 Marks GATE-ECE/TCE-2007()


[D]5.0

 $[B] \int_0^\infty \frac{\cos x}{1+x} dx$ $[D] \int_0^1 \frac{1-\cos x}{1+x^{\frac{5}{2}}} dx$

[A]1.0 [C]4.0

Calculus

⁷⁾ The derivative of the symmetric function drawn in given figure will look like

		2 Marks GATE-ECE/TCE-2008()
[A]2	[B] 1	
[C]0.5	[D]0	
¹⁶⁾ Which of the following functions would have only odd point $x = 0$?	powers of x in its Taylor series e	
$[A]\sin(x^3)$	$[B]$ sin (x^2)	2 Marks GATE-ECE/TCE-2008()
$[C]cos(x^3)$	$[D]^{cos(x^2)}$	
¹⁷⁾ In the Taylor series expansion of $exp(x) + sin(x)$ about		t of $(x - \Pi)^2$ is 2 Marks GATE-ECE/TCE-2008()
[A] exp (π)	[B]0.5 exp (π)	
[C]exp (π) + 1	[D]exp (π) –1	
¹⁸⁾ The value of the integral of the function $g(x, y) = 4x^3 + y^3$	¹⁰ y ⁴ along the straight line segme	ent from the point
(0,0) to the point $(1,2)$ in the x-y plane is		
[A]33	[B] 3 5	2 Marks GATE-ECE/TCE-2008()
[C]40	[D]56	
19)	[5]50	$\int_{-\infty}^{Q}$
	Olando (0.1) The line integra	$2\int_{P}^{Q} (xdx + ydy)$
Consider points P and Q in the x-y plane, with $P = (1, $	· · · · · ·	dl ^{or}
along the semicircle with the line segment PQ as it	s diameter	
		2 Marks GATE-ECE/TCE-2008()
[A] is-1	[B] _{is 0}	
[C]is 1	[D]depends on the direction (c anticlockwise) of the sem	
20) The Taylor series expansion of $\frac{\sin X}{x - \pi}$ at $x = \Pi$ given		
		2 Marks GATE-ECE/TCE-2009()
$[A] 1 + \frac{(X - \pi)^2}{3!} + \dots$	$[B]-1-\frac{(X-\pi)^2}{3!}+$	
$[C]^{1} - \frac{(X - \pi)^{2}}{3!} +$	$[D]^{-1} + \frac{(X - \pi)^2}{3!} + \dots$	
²¹⁾ The maximum value of θ until which the approximatio	$n^{\sin\theta} \approx \theta$ holds to within 10% e	TTOT IS 1 Marks GATE-ECE/TCE-2013()
[A] 10 ⁰	[B] 18 ⁰	
[C]50 ⁰	[D]90°	
²²⁾ The maximum value of $f(x) = x^3 - 9x^2 + 24x + 5$ in the	interval [1 6] is	
[4]21		EEE-2012,GATE-ECE/TCE-2012()
[A]21	[B]25	
[C]41	[D]46	
²³⁾ If $e^y = X^{\frac{1}{x}}$, then y has a		2 Marks GATE-ECE/TCE-2010()
[A] Maximum at $X = e$	[B] Minimum at X = e	()
[C]Maximum at $X = e^{-1}$	[D]M in the set of $V = -1$	
[e]maximumat	[D]Minimum at $ = e^{-1} $	

Calculus

Key Pape	er								
1.	с	2.	A	3.	В	4.	С	5.	Α
6.	Α	7.	с	8.	D	9.	A	10.	Α
11.	с	12.	D	13.	Α	14.	А	15.	А
16.	А	17.	в	18.	Α	19.	в	20.	в
21.	в	22.	с	23.	А				

1) The formula used to compute an approximation for the second derivative of a function f at a point x_0 is. 1 Marks GATE-CSE/IT-1996()

$\begin{bmatrix} A \end{bmatrix}^{\frac{f(x_0+h)+f(x_0-h)}{2}} \\ \begin{bmatrix} B \end{bmatrix}^{\frac{f(x_0+h)-f(x_0-h)}{2h}} \\ \begin{bmatrix} D \end{bmatrix}^{\frac{f(x_0+h)-2f(x_0)+f(x_0-h)}{h^2}} \\ \begin{bmatrix} D \end{bmatrix}^{\frac{f(x_0+h)-2f(x_0)+f(x_0-h)}{h^2}} \\ \end{bmatrix}$	
--	--

2) The solution of differential equation $y_{'} + 3y_{'} + 2y = 0$ is of the form

$[A]C_1e^{x}+C_2e^{2x}$	$[B]C_1e^{-x} + C_2e^{3x}$
$[C]C_1e^{-x} + C_2e^{-2x}$	$[D]C_1e^{-2x} + C_22^{-x}$

3) Backward Euler method for solving the differential equation $\frac{dy}{dx} = f(x, y)$ is specified by, (choose one of the following).

$[\mathbf{A}] y_{n+1} = y_n + hf(x_n, y_n)$	$[B] y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$
$[C]y_{n+1} = y_{n-1} + 2hf(x_n, y_n)$	$[D]y_{n+1} = (1+h)f(x_{n+1}, y_{n+1})$

4) The differential equation

 $\frac{d^2y}{dx^2} + \frac{dy}{dx} + \sin y = 0$ is

[A] linear [C]homogeneous

5) The differential equatio $\frac{d^2y}{dx^2} + siny = 0$

[A] linear [B] non-linear	2 Marks GATE-ECE/TCE
[C]homogeneous [D]of degree two	
dX = V	

6) With initial condition x(1)=0.5 the solution of the differential equation $t\frac{dX}{Dt} + X = t$ is 1 Marks GATE-EEE-2012,GATE-ECE/TCE-2012()

$$[A] X = t - \frac{1}{2} [C] X = \frac{t^2}{2} [D] X = \frac{t}{2} [D] X = \frac{t}{2}$$

7) With K as a constant, the possible solution for the first order differential equation $\frac{dy}{dx} = e^{-3x}$

$[A] - \frac{1}{3}e^{-3x} + K$	$[B] - \frac{1}{3}e^{3x} + K$
$[\mathbf{C}] - \frac{\tilde{1}}{3}e^{-3x} + K$	$[D]_{-3e^{-x}+K}$

8) The order and degree of the differential equation

 $\frac{d^3y}{dx^3} + 4\sqrt{\left(\frac{dy}{dx}\right)^3} + y^2 = 0$ are respectively

[A] 3 and 2 [B]2 and 3 [C]3 and 3 [D]3 and 1

9) The solution to the ordinary differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$

$$[A] y = c_1 e^{3x} + c_2 e^{-2x} [C] y = c_1 e^{-3x} + c_2 e^{2x} [D] y = c_1 e^{-3x} + c_2 e^{2x} [D] y = c_1 e^{-3x} + c_2 e^{-2x}$$

10) The partial differential equation that can be formed from

$$z=ax + by + ab has the from (with $p = \frac{\partial z}{\partial x} and q = \frac{\partial z}{\partial y}$)$$

[A] z = px + qy[B]z = px + pq[C]z = px + qy + pq[D]z = qy + pq11) Given a function $f(x, y) = 4x^2 + 6y^2 + -8x - 4y + 8$

The optimal value of f(x, y)

1 Marks GATE-CSE/IT-1994()

2 Marks GATE-CSE/IT-1995()

[B]non-linear

[D]of degree two

1 Marks GATE-CSE/IT-1993()

2 Marks GATE-ECE/TCE-1993()

1 Marks GATE-CE-2010()

1 Marks GATE-EEE-2011()

2 Marks GATE-CE-2010()

2 Marks GATE-CE-2010() [A] Is a minimum equal to 10/3[B] Is a maximum equal to 10/3[C]Is a minimum equal to 8/3 [D]Is a maximum equal to 8/3 12) The solution of the ordinary differential equation $\frac{dy}{dx} + 2y = 0$ for the boundary condition, y = 5 at x = 1 Marks GATE-CE-2012() [A] $y = e^{-2x}$ $[B] y = 2e^{-2x}$ $[C]y = 10.95e^{-2x}$ $[D]y = 36.95e^{-2x}$ 13) For an analytic function, f(x+iy) = u(x,y) + iv(x,y), u is given by $u = 3x^2 - 3y^2$. The expression for v, considering K to be a constant is 2 Marks GATE-CE-2011() [A] $3y^2 - 3y^2 + K$ [B] 6x - 6y + K[C]6y - 6x + K[D]6xy + K14) The solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = x$, with the condition that y = 1 at x = 1, is 2 Marks GATE-CE-2011() [A] $y = \frac{2}{3x^2} + \frac{x}{3}$ $[B] y = \frac{x}{2} + \frac{1}{2x}$ $\int D y = \frac{2}{3x} + \frac{x}{3}$ $[C]y = \frac{2}{3} + \frac{x}{3}$ 15) The differential equation $\frac{dy}{dx} = 0.25y^2$ is to be solved using the backward (implicit) Euler's method with boundary condition y=1 at x=0 and with a step size of 1. What would be the value of y at x=11 Marks GATE-CE-2006() [A]1.33 [B] 1.67 [C]2.00 [D]2.33 16) The general solution $\frac{d^2y}{dx^2} - y = 0$ is 1 Marks GATE-CE-2008() $[\mathbf{A}] y = p \cos x + Q \sin x$ $[\mathbf{B}] y = p \cos x$ $[C]y = P \sin x$ $[D]y = P \sin^2 x$ 17) Solution of the differential equation $3y \frac{dy}{dx} + 2x = 0$ represents a family of 2 Marks GATE-CE-2009() [A] ellipses [B] circles [C]parabolas [D]hyperbolas The solution of the differential equation, $x^2 \frac{dy}{dx} + 2xy - x + 1$, given that at x = 1, y = 0 is 18) 2 Marks GATE-CE-2006() $\begin{array}{l} [A] \frac{1}{2} - \frac{1}{x} + \frac{1}{2x^2} \\ [C] \frac{1}{2} + \frac{1}{x} + \frac{1}{2x^2} \\ [C] \frac{1}{2} + \frac{1}{x} + \frac{1}{2x^2} \\ 19) \text{The equation} \end{array} \\ \begin{array}{l} k_x \frac{\partial^2 h}{\partial x^2} + k_z \frac{\partial^2 h}{\partial z^2} = 0 \\ \text{can be transformed to} \frac{\partial^2 h}{\partial x_1^2} + \frac{\partial^2 h}{\partial z^2} = 0 \\ \text{by substiting} \end{array}$ 2 Marks GATE-CE-2008() $[\mathbf{B}] x_1 = x \frac{k_x}{k_z}$ $[\mathbf{D}] x_1 = x \sqrt{\frac{k_z}{k_z}}$ $[\mathbf{A}] x_1 = x \frac{k_z}{k_x}$ $[\mathbf{C}] x_1 = x \sqrt{\frac{k_x}{k_x}}$ 20) Solution of $\frac{dy}{dx} = -\frac{x}{y}$ at x=1 and $x = \sqrt{3}$ is 2 Marks GATE-CE-2008() $[A] x.y^2 = 2$ [B] $x + y^2 = 4$ [D] $x^2 + y^2 = 4$ $[C]x^2 \cdot y^2 = -2$ 21) The solution of $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 17y = 0$, y(0) = 1, $\frac{dy}{dx} \left(\frac{p}{4}\right) = 0$ in the range $0 < x < \frac{\pi}{4}$ is given by 2 Marks GATE-CE-2005() $[\mathbf{B}] e^{x} \left(\cos 4x - \frac{1}{4} \sin 4x \right)$ $[\mathbf{A}] e^{-x} \left(\cos 4x + \frac{1}{4} \sin 4x \right)$ $[\mathbf{C}]e^{-4x}\left(\cos x-\frac{1}{4}\sin x\right)'$ $[\mathbf{D}]e^{-4x}\left(\cos 4x-\frac{1}{4}\sin 4x\right)$ 22) The degree of the differential equation $\frac{d^2x}{dt^2} + 2x^3 = 0$ is 1 Marks GATE-CE-2007() [A]0 [B] 1 [C]2 [D]3

23) The solution for the differential equation $\frac{dy}{dx} = x^2 y$ with c	condition that $y = 1$ at $x = 0$ is	1 Marks GATE-CE-2007()
[A] $y = e^{\frac{1}{2x}}$ [C] $ln(y) = \frac{x^2}{2}$	$[B] ln(y) = \frac{x^3}{3} + 4$ $[D]_{y} = e^{\frac{x^3}{3}}$	
 24) A body originally at^{60°}C cools down to^{40°}C in 15 minu will be the temperature of the body at the end of 3 	tes when kept in air at a temperatu	re of ^{25°} C. What
[A] 35.2° C [C]28.7° C	[B] 31.5° C [D]15° C	2 Marks GATE-CE-2007()
25) For the differentia I equation, $f(x,y) \frac{dy}{dx} + g(x,y) = 0$ to I		
$[\mathbf{A}] \frac{\partial f}{\partial y_{\pm}} \frac{\partial g}{\partial x}$	$\begin{bmatrix} \mathbf{B} \end{bmatrix} \frac{\partial f}{\partial x} \frac{\partial g}{\partial y}$	2 Marks GATE-CE-1997()
[C]f = g	$[D]\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 g}{\partial y^2}$	
26) The differential equa tion $\frac{dy}{dx}$ + Py = Q, is a linear equat [A] P is a constant but Q is a function of y [C]P is a function of y but Q is a constant	ion of first order only if [B] Pand Qare functions of y or co [D] P and Q are functions of x or co	
27) Biotransformation of an organic compound having co differential equation $\frac{dx}{dt} + kx^2 = 0$, where k is the reaction equation is		
$[A] x = ae^{-kt}$ $[C] x = a(1 - e^{-kt})$	$[B]\frac{1}{x} = \frac{1}{a} + kt$ $[D]k = a + kt$ $\partial^2 \phi = \partial^2$	2 Marks GATE-CE-2004()
The number of boundary conditions required to solve		$\frac{\gamma^2}{\mu^2} = 0$ is 1 Marks GATE-CE-2001()
[A]2 [C]4	[B] 0 [D] 1	
29) The solution for the following differential equation $\frac{d^2y}{dx^2} = 3x - 2$		and y'(1) = -3 is
$[A] y = \frac{x^3}{3} - \frac{x^2}{2} + 3x - 6$ $[C] y = \frac{x^3}{2} - x^2 - \frac{5x}{2} + 2$	[B] $y = 3x^3 - \frac{x^2}{2} - 5x + 2$ [D] $y = x^3 - \frac{x^2}{2} + 5x + \frac{3}{2}$	2 Marks GATE-CE-2001()
30) Number of terms in the expansion of general deter	minant of order n is	
[A] n ² [C]n	[B] $n!$ [D] $(n+1)^2$	2 Marks GATE-CE-1999()
31) If c is a constant , solution of the equation $\frac{dy}{dx} = 1 + y^2$	s	2 Marks GATE-CE-1999()
[A] y=sin(x+c) [C]y=tan(x+c) 32) $ \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & -1 \\ y & x^2 & x \end{bmatrix} = 0 represents a parabola par$	$[B] y = \cos(x+c)$ $[D] y = e^{x} + c$	
The equation $\begin{bmatrix} y & x^2 & x \end{bmatrix} = 0$ represents a parabola pa	ssing through the points	2 Marks GATE-CE-1999()
[A](0, 1), (0, 2), (0, -1) [C](1, 1), (0, 0), (2, 2)	[B](0, 0), (-1, 1),(1, 2) [D](1, 2), (2i 1), (0, 0)	
33) Consider the differential equation $\ddot{y} + 2\dot{y} + y = 0$ with b y(2) is	oundary conditions y(0) = 1 , y(1) =	0. The value of

2 Marks GATE-EIN/IN-2011()

			2 Marks GATE-EIN/IN-2011()
	[A]-1	$[B]_{-e^{-1}}$	
	$[C]_{-e^{-2}}$	$[D]-e^2$	
	34) Consider the difference equation $y[n] - \frac{1}{3}y[n-1] = x[$	$x[n] = \left(\frac{1}{2}\right)^n u$	[n]
	Consider the difference equation $\int_{a}^{a} g^{[n]} - \frac{1}{3}g^{[n]} - $	and suppose that 2	. Assuming the
	condition of initial of rest , the solution for y[n] , $n \ge 0$ is	5	
	$[A] 3 \left(\frac{1}{2}\right)^n - 2 \left(\frac{1}{2}\right)^n$	$[\mathbf{P}]_{-2} \left(\frac{1}{2}\right)^n + 3 \left(\frac{1}{2}\right)^n$	2 Marks GATE-EIN/IN-2011()
	$[\mathbf{A}] \left\{ 3 \left(\frac{1}{3} \right)^n - 2 \left(\frac{1}{2} \right)^n \right\}$ $[\mathbf{C}] \left\{ \frac{2}{3} \left(\frac{1}{3} \right)^n + \frac{1}{3} \left(\frac{1}{2} \right)^n \right\}$	$\begin{bmatrix} \mathbf{B} \end{bmatrix} - 2\left(\frac{1}{3}\right)^n + 3\left(\frac{1}{2}\right)^n \\ \begin{bmatrix} \mathbf{D} \end{bmatrix}_3^1 \left(\frac{1}{3}\right)^n + \frac{2}{3}\left(\frac{1}{2}\right)^n \end{bmatrix}$	
	$[\mathbf{C}]_{\overline{3}}^{\frac{1}{2}}\left(\frac{1}{3}\right) + \frac{1}{3}\left(\frac{1}{2}\right)$	$[D]_{\overline{3}}^{\frac{1}{2}}\left(\frac{1}{3}\right) + \frac{1}{3}\left(\frac{1}{2}\right)$	
	35) The type of the partial differential equation $\frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2}$ is		
	35) The type of the partial differential equation $O^{1} = O^{2}$ is		1 Marks GATE-EIN/IN-2013()
	[A] parabolic	[B] Elliptic	
	[C]Hyperbolic	[D]Nonlinear	
	36) While numerically solving the differential equation $\frac{dy}{dx}$	$+ 2xy^2 = 0$, y(0) = 1, using Euler's	predictorcorrector
	(improved Euler-Cauchy) method with a step size		
			2 Marks GATE-EIN/IN-2013()
	[A]1.00	[B] 1.03	
	[C]0.97	[D]0.96	
	37) The maximum value of $f(x) = x^3 - 9x^2 + 24x + 5$ in the interval	erval [1,6] is:	2 Marks GATE-EIN/IN-2012()
	[A]21	[B]25	2 Marks GATE-LIWIN-2012()
	[C]41	[D]46	
20)	Consider the Differential equation		
38)	-		
	$\frac{d^2y(t)}{dt^2} + 2\frac{dy(t)}{dt} + y(t) = \delta(t) \text{ with } y(t) _{t=0} = -2 \text{ and } \frac{dy}{dt} _{t=0}$ The numerical value of $\frac{dy}{dt} _{t=0^+} = 0$ is :	$_{=0^{-}} = 0$	
	$\frac{dy}{dy} = 0$		
	The numerical value of $dt^{t=0^+-0}$ is :		
			2 Marks GATE-EIN/IN-2012()
	[A]-2	[B]-1	
	[C]0 39) Given $y = x^2 + 2x + 10$, the value of $\frac{dy}{dx} _{x=1}$ is equal to	[D]1	
	39) Given $y = x^2 + 2x + 10$, the value of dx $ x=1$ is equal	to	1 Marks GATE-EIN/IN-2008()
	[A]0	[B] 4	
	[C]12	[D]13	
	40) Consider the differential equation $\frac{dy}{dx} = 1 + y^2$ Which on		lar solution of this
	differential equation?		
			2 Marks GATE-EIN/IN-2008()
	$[A] y = \tan(x+3)$	[B]y = tanx + 3	
	[C]x=tan(y+3)	[D]x = tany+3	
	41) Consider the function $y = x^2 - 6x + 9$ The maximum va	llue of y obtained when x varies ov	ver the interval 2 to 5
	is		2 Marks GATE-EIN/IN-2008()
	[A] 1	[B] 3	_ mane e/m()
	[C]4	[D]9	
	42) Consider differential equation $\frac{dy}{dx} + y = e^x$ with y (0) =	1 . The value of y(1) is	
	$[A] e + e^{-1}$	[B] $\frac{1}{2}(e - e^{-1})$	2 Marks GATE-EIN/IN-2010()
	$[C]\frac{1}{2}(e + e^{-1})$	$[D] \frac{2}{2} (e - e^{-1})$	
	43) The differential equation $\frac{dx}{dt} = \frac{4-x}{\tau}$ with x(0)=0, and the	ne constant 7>0 . is to be numerica	llv integrated using
	the forward Euler method with a constant integration		

the forward Euler method with a constant integration time step T. The maximum value of T such that the numerical solution of x converges is

2 Marks GATE-EIN/IN-2009()

[A] 7/ 4 [B] *≠* 2 [C]₇ [D]2⁷ 44) The general solution of the differential equation $(D^2 - 4D + 4)y = 0$, is of the form (given D=d/dx) and C_1 and C_2 are constants 2 Marks GATE-EIN/IN-2005() [A] $C_1 e^{2x}$ $[\mathbf{B}]C_1e^{2x} + C_2e^{-2x}$ (D) $C_1e^{2x} + C_2xe^{2x}$ (D) $C_1e^{2x} + C_2xe^{2x}$ The following differential equation has dt^2 + 4 $\left(\frac{dy}{dt}\right)^3$ + y^2 + 2 = x 45) 2 Marks GATE-ECE/TCE-2005() [A] degree = 2, order = 1[B]degree = 1, order = 2 [C]degree = 4, order = 3[D]degree = 2, order = 3A solution of the following differential equation is give $\frac{d^2y}{dx} - 5\frac{dy}{dx} + 6y = 0$ 46) 2 Marks GATE-ECE/TCE-2005() **[B]** $y = e^{2x} + e^{3x}$ $[A] y = e^{2x} + e^{-3x}$ $[C]y = e^{-2x} + e^{3x}$ $[D]y = e^{-2x} + e^{-3x}$ 47) A solution for the differential equation $\dot{x}(t) + 2x(t) = \delta(t)$ with initial condition x(0-) = 0 is 2 Marks GATE-ECE/TCE-2006() $[A]e^{-2t}u(t)$ $[B]e^{2t}u(t)$ $[C]e^{-t}u(t)$ $[D]^{e^t u(t)}$) For the differential equation ${{d^2y}\over{dX^2}}+k^2y=0$ the boundary conditions are 48) (i) y = 0 for x = 0 and (ii) y = 0 for x = aThe form of non-zero solutions of y (where m varies over all integers) are 2 Marks GATE-ECE/TCE-2006() $[\mathbf{B}] y = \sum_{m} A_{m} \cos \frac{m\pi X}{a}$ $[\mathbf{D}]^{y} = \sum_{m}^{m} A_{m} e^{\frac{m\pi}{a}}$ $[\mathbf{A}] y = \sum A_m \sin \frac{m\pi X}{a}$ $[\mathbf{C}]y = \sum_{m}^{m} A_m X \frac{m\pi}{a}$. The solution of the differential equation $k^2 \frac{d^2 y}{dX^2} = y - y_2$ 49) under the boundary conditions (i) $y = y_1$ at x = 0 and (ii) $y = \frac{y_2}{2}at x = \infty$, where k, $\frac{y_1}{2}and \frac{y_2}{2}are$ constant is 2 Marks GATE-ECE/TCE-2007() $[A] y = (y_1 - y_2)exp(-x/k^2) + y_2$ $[B]y = (y_2 - y_1)exp(-x/k) + y_1$ $[D]y = (y_1 - y_2)exp(-x/k) + y_2$ $[C]y = (y_1 - y_2) sin h(x/k) + y_1$ 50) Which of the following is a solution to the differential equation $\frac{dx(t)}{dt} + 3x(t) = 0?$ 2 Marks GATE-ECE/TCE-2008() $[B] x(t) = 2e^{-3t}$ $[D]x(t) = 3t^{2}$ $\frac{d^{2}y}{dt^{2}} + \left(\frac{dy}{dt}\right)^{3} + y^{4} = e^{-t}$ is $[A] x(t) = 3e^{-t}$ $[C]^{x}(t) = (-3/2)t^{2}$ 51) The order of the differential equation 1 Marks GATE-ECE/TCE-2009() [A]1 [B] 2 [C]3 [D]4

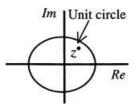
52) Match each differential equation in Group I to its family of solution curves from Group II

Group I Group II $\frac{dy}{dy} = \frac{y}{dy}$ dxΑ. 1.Circles $\frac{dy}{dt} = \frac{y}{dt}$ B. dx2. Straight lines dy =c. \overline{dx} 3. Hyperbolas $\frac{dy}{dt} =$ D. \overline{dx} 2 Marks GATE-ECE/TCE-2009() [A]A В С D [B] A В С D 3 2 1 B C D 3 3 2 1 1 [C]A С В D [D]A 3 2 1 2 1 3 2 3 53) The solution of the first order differential equation x'(t) = -3x(t), x (0) = x_0 is 2 Marks GATE-EEE-2005() $[B]x(t) = x_0 e^{-3}$ $[D]x(t) = x_0 e^{-1}$ $[A] x(t) = x_0 e^{-3t}$ $[C]^{x}(t) = x_0 e^{-1/3}$ 54) Equation $e^x - 1 = 0$ is required to be solved using Newton's method with a initial guess $x_0 = -1$. Then, after one step of Newton's method, estimate x_1 of the solution will be given by 2 Marks GATE-EEE-2008() [A]0.71828 [B]0.36784 [D]0.00000 [C]0.20587 A system is described by the differential equation $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y(t) = x(t)$. Let x(t) be a rectangular pulse 55) given by $x(t) = \begin{cases} 1 & 0 < t < 2 \\ 0 & otherwise \end{cases}$ Assuming that y(0) = 0 and $\frac{dy}{dt} = 0$, the Laplace transform of y(t) is 2 Marks GATE-ECE/TCE-2013() $[B] \frac{1 - e^{-2s}}{s(s+2)(s+3)} \\ [D] \frac{1 - e^{-2s}}{(s+2)(s+3)}$ $[A] \frac{e}{s(s+2)(s+3)}$ $[C]_{\overline{(s+2)(s+3)}}$ 56) A system described by a linear, constant coefficient, ordinary, first order differential equation has an exact solution given by y(t) for t > 0, when the forcing function is x(t) and the initial condition is y(0). If one wishes to modify the system so that the solution becomes -2y(t) for t>0, we need to 2 Marks GATE-ECE/TCE-2013() [A] change the initial condition to -y(0) and the [B] change the initial condition to 2y(0) and the forcing function to 2x(t) forcing function to -x(t)[C]Change the initial condition to $j\sqrt{2y}(0)$ and the [D] change the initial condition to 2y (0) and the forcing function to $j\sqrt{2x(t)}$ forcing function to -2x(t)57) Consider the differential equation $\frac{d^2 y(t)}{dt^2} + 2 \frac{dy(t)}{dt} + y(t) = \delta(t), \text{ with } y(t)|_{t=0} = -2 \text{ and } \frac{dy}{dt}|_{t=0} = 0$ The numerical value of $\frac{dy}{dt}|_{t=0}$ is 2 Marks GATE-EEE-2012, GATE-ECE/TCE-2012() [A]-2 [B]-1 [C]0 [D]1 A function n(x) satisfied the differential equation $\frac{d^2n(x)}{dx^2} - \frac{n(x)}{L^2} = 0$ where L is a constant . The boundary 58) conditions are: n(0) = K and $n(\infty) = 0$. The solution to this equation is

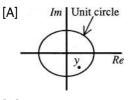
1 Marks GATE-ECE/TCE-2010() $[A] n (x) = K \exp(x/L)$ **[B]** $n(x) = K \exp(-x/\sqrt{L})$ $[\mathbf{C}]n(x) = K^2 exp(-x/L)$ $[D]n(x) = K \exp(-x/L)$ $\frac{dy(x)}{dx} - y(x) = x$ with the initial condition y(0)=0. Using Euler's first order 59) Consider differential equation dxmethod with a step of 0.1, the value of y(0.3) is 2 Marks GATE-ECE/TCE-2010() [A]0.01 [B]0.031 [C]0.0631 [D]0.1 60) For the differential equation $\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 8x = 0$ with initial conditions X(0)=1 and $\frac{dx}{dt}|_{t=0}$, the solution is 2 Marks GATE-EEE-2010() $[A] x(t) = 2e^{-6t} - e^{-2t}$ [B] $x(t) = 2e^{-2t} - e^{-4t}$ $[C]x(t) = -e^{-6t} + 2e^{-4t}$ $[D]^{t}(t) = -e^{-2t} + 2e^{-4t}$) The solution of the differential equation $\frac{dy}{dx} = ky, y(0) = c$ is 61) 1 Marks GATE-ECE/TCE-2011() $[A]_x = ce^{-ky}$ $[B]_x = ke^{cy}$ $[C]y = ce^{kx}$ $[D]y = ce^{-kx}$ 62) The value of $\frac{1}{2}$ in the mean value theorem of $f(b) - f(a) = (b - a)f'(\xi)$ for $f(x) = Ax^2 + Bx + c$ in (a,b) is 2 Marks GATE-ME-1994() [A]b+a[B]b-a $\left[D \right]^{\frac{b-a}{2}}$ $[C]^{\frac{b+a}{2}}$ 63) For the differential equation $\frac{dy}{dt} + 5y = 0$ with y(o) = 1, the general solution is 2 Marks GATE-ME-1994() $[A] e^{5t}$ $[B]e^{-5t}$ $[C]5e^{-5t}$ $[D]e^{\sqrt{-5t}}$ 64) The solution to the differential equation f''(x)+4f'(x)+4f(x) = 0 is 2 Marks GATE-ME-1995() [A] $f_1(x) = e^{-2x}$ $[B] f_1(x) = e^{2x}, f_2(x) = e^{-2x}$ $[\mathbf{C}]f_1(x) = e^{-2x}, f_2(x) = e^{-2x}$ $[D]f_1(x) = e^{-2x}, f_2(x) = e^{-x}$ 65) For the following set of simultaneous equations : 1.5x - 0.5y = 24x + 2y + 3z = 97x + y + 5z = 101 Marks GATE-ME-1997() [A] the solution is unique [B] infinitely many solutions exist [C] the equations are incompatible [D]finite number of multiple solutions exist. The particular solution for the differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 5 \cos x$ is 66) 2 Marks GATE-ME-1996() $[A] 0.5 \cos x + 1.5 \sin x$ [B] 1.5 cos x+0.5 sin x [D]0.5 cos x [C]1.5 sin x d ø 67) If $\phi(x) = \int_0^{x^*} \sqrt{t} dt$, then dx is 1 Marks GATE-ME-1998() $[A]_{2x^2}$ $[B]\sqrt{x}$ [C]0 [D]1 $X^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0$ 68) The general solution of the differential equation 2 Marks GATE-ME-1998() $[A] Ax + Bx^2$ (A, B are constants) $\begin{bmatrix} B \end{bmatrix} Ax + B \log(x)$ (A, B are constants) $[C]Ax + Bx^2 log(x)$ (A, B are constants) $\begin{bmatrix} D \end{bmatrix} Ax + Bx \log(x)$ (A, B are constants) $\frac{69}{\partial t^2} \frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$ represents the equation for

[A] Vibration of a stretched string [C]Heat flow in thin rod 70) $\frac{\partial u}{\partial u} + u \frac{\partial u}{\partial u} = \frac{\partial^2 u}{\partial u}$	[B] motion of a projectile in agray [D]Oscillation of a simple pendu	
The partial differential equation $\overline{\partial t}^{+u} \overline{\partial x}^{-} \overline{\partial x^2}$ is a [A] linear equation of order 2	[B] non-linear equation of order 1	1 Marks GATE-ME-2013()
[C]linear equation of order 1 71) The function f (t) satisfies the differential equation $\frac{d^2 f}{dt^2}$ $\frac{d^2 f}{dt}(0) = 4$	[D]non-linear equation of order 2 f + f = 0 and the auxiliary condition	ons, f(o) = 0,
$\frac{dr}{dt}(0) = 4$. The Laplace transform of f (t) is given by [A] $\frac{2}{s+1}$ [C] $\frac{4}{s^2+1}$	$[B]\frac{4}{s+1} \\ [D]\frac{4}{s^{4}+1}$	2 Marks GATE-ME-2013()
72) The solution to the differential equation $\frac{d^2u}{dx^2} - k\frac{du}{dx} = 0$ conditions u(0) = 0 and u(L) = U, is	where k is a constant, subjected to	the boundary
$[\mathbf{A}]^{u} = U \frac{x}{L}$ $[\mathbf{C}]^{u} = U \left(\frac{1 - e^{-kx}}{1 - e^{-kL}} \right)$	$[B] u = U\left(\frac{1 - e^{kx}}{1 - e^{kL}}\right)$ $[D] u = U\left(\frac{1 + e^{kx}}{1 + e^{kL}}\right)$	2 Marks GATE-ME-2013()
73) If $z = f(x,y)$, then dz is equal to	ar ar	1 Marks GATE-ME-2000()
$[\mathbf{A}]\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$ $[\mathbf{C}]\frac{\partial f}{\partial y}dx - \frac{\partial f}{\partial x}dy$	$[B]\frac{\partial f}{\partial y}dx + \frac{\partial f}{\partial x}dy$ $[D]\frac{\partial f}{\partial y}dx - \frac{\partial f}{\partial x}dy$	
74) The solution of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$		1 Marks GATE-ME-2000()
$[A]^{Ae^{x}} + Be^{-x}$ $[C]^{e^{x}}[Acos(\sqrt{3}/2)x + Bcos(\sqrt{3}/2)x]$ $75)\frac{d^{2}y}{dx^{2}} + (x^{2} + 4x)\frac{dy}{dx} + y = x^{8} - 8$ The above equation is a	$[B] e^{x} (Ax + B)$ $[D] e^{x/2} [Acos(\sqrt{3}/2)x + Bcos(\sqrt{3}/2)x]$	2 Marks GATE-ME-1999()
[A] partial differential equation [C]non-homogeneous differential equation	[B] non-linear differential equat [D]ordinary differential equation	ion
76) The maximum value of the directional derivative of the	function $\phi = 2x^2 + 3y^2 + 5z^2$ at a point	It (1,1,-1) is 2 Marks GATE-ME-2000()
[A]10 [C]√ ¹⁵²	[B]-4 [D]152	
77) Consider the system of simultaneous equations x+2y+z=6 2x +y +2z =6 x+y+z=5 This system has		2 Marka CATE ME 2002()
[A] unique solution [C] no solution 78) $\frac{dy}{dt} + y^2 = 0$	[B] infinite number of solutions [D]exactly two solutions.	2 Marks GATE-ME-2003()
78) The solution of the differential equation $\frac{dy}{dy} + y^2 = 0$		2 Marks GATE-ME-2003()
$[A] y = \frac{1}{x+c}$ $[C] ce^{x}$	[B] $y = \frac{-x^3}{3} + c$ [D]unsolvable as equation is not	n-linear.

79) The Blasius equation $\frac{d^3f}{d\eta^3} + \frac{f}{2}\frac{d^2f}{d\eta^2} = 0$ is a 1 Marks GATE-ME-2010() [A] second order nonlinear ordinary differential [B] third order nonlinear ordinary different equation equation [D]mixed order nonlinear ordinary differential [C] third order linear ordinary differential equation equation Consider the differential equation $x^2 \frac{d^{2y}}{dx^2} + x \frac{dy}{dx} - 4y = 0$ with the boundary conditions of y (0)=0 and y (1) 80) = 1. The complete solution of the differential equation is 2 Marks GATE-ME-2012() $[B]^{sin}\left(\frac{\pi x}{2}\right)$ $[D]^{e^{-x}sin}\left(\frac{\pi x}{2}\right)$ $[A]_{x^2}$ $[C]^{e^x sin\left(\frac{\pi x}{2}\right)}$ 81) Consider the differential equation $\frac{dy}{dx} = (1 + y^2)x$. The general solution with constant c is 2 Marks GATE-ME-2011() $[A] y = tan \frac{x^2}{2} + tan c$ $[\mathbf{B}]y = tan^2(\frac{x}{2} + c)$ $[C]y = tan^{2}(\frac{x}{2}) + c$ $[Dy = tan^{2}(\frac{x}{2}) + c$ $[Dy = tan(\frac{x^{2}}{2} + c)$ The solution of $x\frac{dy}{dx} + y = x^{4}$ with the condition $y(1) = \frac{6}{5}$ is 82) 2 Marks GATE-ME-2009() $[A]y = \frac{x^4}{5} + \frac{1}{x}$ $[C]y = \frac{x^4}{5} + 1$ $[B]y = \frac{4x^4}{5} + \frac{1}{5x}$ $[D]y = \frac{x^5}{5} + 1$ ⁸³⁾ If $x = a(\theta + sin\theta)$ and $y = a(1 - cos\theta)$, then $\frac{dy}{dx}$ will be equal to 1 Marks GATE-ME-2004() $[A]^{sin} \left(\frac{\theta}{2}\right)$ $[B]_{cos}\left(\frac{\theta}{2}\right)$ $[D]_{cot}\left(\frac{\theta}{2}\right)$ $[C]^{tan} \begin{pmatrix} \overline{2} \\ \theta \\ \overline{2} \end{pmatrix}$ The solution of the differential equation $\frac{dy}{dx} + 2xy = e^{-x^2}$ with y(0) = 1 is 1 Marks GATE-ME-2006() $[A](1+x)^{+x^2}$ $[B](1+x)_{-x^2}$ $[C](1-x)e^{+x^2}$ $[D](1-x)_{-x^2}$ ⁸⁵⁾ By a change of variables x(u,v) = u,v,y(u,v) = vlu. in a double integral, the integrand f(x, y) changes to $f(u, v, u/v) \phi(u, v)$. Then $\phi(u, v)$ is 2 Marks GATE-ME-2005() [A] 2v/u[B]2uv $[C]_{V^2}$ [D]1 86) If $x^2 \frac{dy}{dx} + 2xy = \frac{2lnx}{x}$, and y(1)=0, then what is y(e)? 2 Marks GATE-ME-2005() [A] e [B] 1 ⁸⁷⁾ $\frac{[C] 1/e}{For \frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 3e^{2x}}, \text{ the particular integral is}$ $[D]^{1/e^{2}}$ 2 Marks GATE-ME-2006() $[\mathsf{A}]\frac{1}{15}e^{2x}$ $[\mathbf{B}] \frac{1}{\mathbf{E}} e^{2x}$ $[C]3e^{2x}$ $[D]C_1e^{-x} + C_2e^{-3x}$ ⁸⁸⁾ Given that \ddot{x} + 3x = 0, and x(0) = 1; (0) = 0, what is x (1)? 1 Marks GATE-ME-2008() [A]-0.99 [B]-0.16 [C]0.16 [D]0.99 ⁸⁹⁾ The minimum value of function $y = x^2$ in the interval [1, 5] is 1 Marks GATE-ME-2007() [A]0 [B] 1 [C]25 [D]undefind


	⁹⁰⁾ The partial differential equation, $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y}$	= 0 has	1 Marks GATE-ME-2007()
	[A] degree 1 order 2	[B]degree 1 order 1		
	[C]degree 2 order 1 $\partial^2 f$	[D]degree 2 order 2		
	Let $f \neq x^{x}$, What is $\overline{\partial x \partial y}$ at x=2, y=1?		2 Marks GATE-ME-2008()
	[A] 0	[B]In 2		
	[C]1	[D] $\frac{1}{\ln 2}$		
92)	It is given that $y'' + 2y' + y = 0$, $y(0) = 0$, $y(1) = 0$. What	is y(0.5)?	2 Marks GATE-ME-2008()
	[A] 0	[B] 0.37		
	[C]0.62	[D]1.13		
	93) If $y = x + \sqrt{x + \sqrt{x + \sqrt{x + \dots \infty}}}$, then y(2)=		2 Marks GATE-ME-2007()
	[A] 4 or 1	[B] 4 only		
	[C]1 only	[D]undefined		
	⁹⁴⁾ The solution of $\frac{dy}{dx} = y^2$ with initial value y(0) = 1 is bound	nded in the interval	2 Marks GATE-ME-2007()
	$[A] - \infty \le x \le \infty$	$[B] - \infty \le x \le 1$		
	[C]x <1, x >1	$[D]^{-2 \le x \le 2}$		
	Statement for Linked answer	-		
	⁹⁵⁾ The complete solution of the ordinary differential equ	$\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0$ is	$y = c_1 e^{-x} + c_2 e^{-3x}$	
	Q. Then p and q are		2 Marks GATE-ME-2005,GATE-ME-2005(\sim
	[A]p=3,q=3	[B]p=3,q=4	2 Marks GATE-ME-2003,GATE-ME-2003(.)
	[C]p=4,q=3	[D]p=4 ,q=4		
	⁹⁶⁾ Which of the following is a solution of the differential e	equation $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + (q+1)$	()y = 0	
	[A] e ^{-3x}	[B] <i>xe^{-x}</i>	2 Marks GATE-ME-2005,GATE-ME-2005(0
	$[C] xe^{-2x}$	$[D]x2e^{-2x}$		

Key Pap	er								
1.	D	2.	С	3.	Α	4.	Α	5.	В
6.	D	7.	Α	8.	Α	9.	с	10.	с
11.	Α	12.	D	13.	D	14.	D	15.	С
16.	Α	17.	Α	18.	Α	19.	D	20.	D
21.	Α	22.	В	23.	D	24.	в	25.	Α
26.	С	27.	В	28.	Α	29.	С	30.	С
31.	С	32.	В	33.	В	34.	в	35.	Α
36.	D	37.	С	38.	D	39.	в	40.	Α
41.	Α	42.	С	43.	D	44.	С	45.	в
46.	в	47.	Α	48.	Α	49.	D	50.	в
51.	в	52.	Α	53.	Α	54.	Α	55.	в
56.	D	57.	D	58.	D	59.	С	60.	в
61.	С	62.	С	63.	в	64.	С	65.	С
66.	Α	67.	Α	68.	D	69.	Α	70.	D
71.	С	72.	В	73.	Α	74.	D	75.	D
76.	С	77.	В	78.	Α	79.	в	80.	Α
81.	D	82.	Α	83.	С	84.	в	85.	Α
86.	D	87.	В	88.	в	89.	в	90.	Α
91.	с	92.	Α	93.	в	94.	С	95.	С
96.	с								

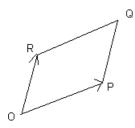

Complex Analysis

1)
$$\oint \frac{z^2-4}{z^2+4} dz$$
 evaluated anticlockwise around the circle $|z-i| = 2$, where $i = \sqrt{-1}$, is
[A]-4 Π [B] 0
[C] $2 + \pi$ [D] $2 + 2i$
2) Given $f(z) = \frac{1}{z+1} - \frac{2}{z+3}$ If C is a counterclockwise path in the z-plane such that $|z+1| = 1$, the value of $\frac{1}{2\Pi i} P_c f(z) dz$ is
[A]-2 [B]-1
[C] 1 [D] 2


3) A point Z has been plotted in the complex plane, as shown in figure below.

The plot of the complex number $y = \frac{1}{z}$ is

[C] Im Unit circle Re



1 Marks GATE-EEE-2011()

4) The infinite series $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$ corresponds to

1 Marks GATE-CE-2012()

[A] see x[B]
 $[C]\cos x$ 1 Marks GATE-CE-2012()5) For the parallelogram OPQR shown in the sketch, $\overline{op} = \hat{a} + b\hat{j}$ and $\overline{OR} = c\hat{i} + d\hat{j}$. The area of the parallelogram is

[A] ad-bc	[B]ac+bd
[C]ad+bc	[D]ab-cd
6) The analytic function $f(z) = \frac{z-1}{z^2+1}$ has singularities	at

2 Marks GATE-CE-2012()

6)

1 Marks GATE-CE-2009()

[A] 1 and – 1	[B]1 and i
[C]1 and -i	[D]iand -i

Complex Analysis

7) The value of the integral $\int_{c} \frac{\cos(2\pi z)}{(2z-1)(z-3)} dz$ (where C is a closed curve given by |z| = 1) is 2 Marks GATE-CE-2009() [B] $\frac{\pi i}{5}$ $[A]_{-\pi i}$ $[C] \frac{2\pi i}{5}$ $[D]\pi i$ 8) What is the area common to the circles r = a and r = 2a cos ? 2 Marks GATE-CE-2006() [A]0.524² [B] 0.614 a² [C] 1.047^{a²} 9) The velocity field for flow is given by $\vec{V} = (5x + 6y + 7z)\hat{i} + (6x + 5y + 9z)\hat{j} + (3x + 2y + \lambda z)\hat{k}$ and the density varies as $\rho = \rho_0 \exp(-21)$. In order that the mass is conserved, the value of λ should be 2 Marks GATE-CE-2006() [B]-10 [A]-12 [C]-8 [D]10 10) Which one of the following is NOT true for complex number Z_1 and Z_2 ? 1 Marks GATE-CE-2005() $[\mathsf{A}]\frac{Z_1}{Z_2} = \frac{Z_1\overline{Z_2}}{|Z_2|^2}$ $[\mathbf{B}]|Z_1 + Z_2| \le |Z_1| + |Z_2|$ $[\mathbf{D}]|Z_1 + Z_2|^2 + |Z_1 - Z_2|^2 = 2|Z_1|^2 + 2|Z_2|^2$ $[C]|Z_1 - Z_2| \le |Z_1| - |Z_2|$ 11) For real values of x, can be written in one of the forms of a convergent series given below : 2 Marks GATE-CE-1997() $\begin{bmatrix} \mathbf{B} \end{bmatrix}_{\mathbf{COS}} (\mathbf{x}) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^5}{5!} \dots \infty$ $\begin{bmatrix} \mathbf{D} \end{bmatrix}_{\mathbf{COS}} (\mathbf{x}) = \mathbf{x} - \frac{x^2}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} \dots \infty$ $\begin{bmatrix} A \end{bmatrix}_{\cos(x) = 1} + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} \dots \infty$ $\begin{bmatrix} C \end{bmatrix}_{\cos(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} \dots \infty}$ 12) The summation of series $S = 2 + \frac{5}{2} + \frac{3}{2^2} + \frac{11}{2^3} + ...\infty$ 1 Marks GATE-CE-2004() [A]4.50 [B]6.0 [C]6.75 [D]10.0 The value of the function $f(x) = \lim_{x \to 0} \frac{x^3 + x^2}{2x^3 - 7x^2}$ is 13) 1 Marks GATE-CE-2004() [A]0 [B]-1/7 [C]1/7 [D]∞ 14) The function $f(x) = 2x^3 - 3x^2 - 36x + 2$ has its maxima at 2 Marks GATE-CE-2004() [A] x = -2only [B]x = 0 only [C]x = 3 only[D]both x = -2 and x = 315) The following function has a local minim a at which value of x $f(x) = x\sqrt{5-x^2}$ 2 Marks GATE-CE-2002() $[A] - \frac{\sqrt{5}}{2}$ [B]√5 $[C]\sqrt{\frac{5}{5}}$ $[D] - \sqrt{\frac{5}{2}}$ 16) The directional derivative of the following function at (1, 2) in the direction of (4i + 3j) is $f(x, y) = x^2 + y^2$ 2 Marks GATE-CE-2002() [A]4/5 [B]4 [C]2/5 [D]1 17) The function $f(x) = e^x$ is 2 Marks GATE-CE-1999() [A] Even [B]Odd [C]Neither even nor odd [D]None of the above 18) If $f(x, y, z) = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$, $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$ is equal to

[A] Zero	[B] 1	2 Marks GATE-CE-2000()
	$[B] x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$	2 Marks GATE-CE-2000()
$\begin{bmatrix} \mathbf{C} \end{bmatrix} \left(x - \frac{\pi}{6} \right) - \frac{\left(x - \frac{\pi}{6} \right)^3}{3!} + \frac{\left(x - \frac{\pi}{6} \right)^5}{5!} - \frac{\left(x - \frac{\pi}{6} \right)^7}{7!} + \dots \\ 20 \end{bmatrix}$ 20) The limit of the function $f(x) = \begin{bmatrix} 1 - a^4 / x^4 \end{bmatrix}$ as $x \to \infty$ is [A] 1	$[D]\frac{1}{2}$ s given by [B] $exp(-a^4)$	2 Marks GATE-CE-2000()
[C] ∞ 21) The maxima and minima of the function $f(x) = 2x^3 - $	[D]Zero $15x^2 + 36x + 10$ occur, respective	ly at 2 Marks GATE-CE-2000()
[A] X= 3 and x = 2 [C]x = 2 and x = 3 22) The curve given by the equation $x^2 + y^2 = 3$ axy, is	[B] x = 1 and x = 3 [D]x = 3 and x = 4	
[A] symmetrical about x – axis [C] symmetrical about line y = x $2^{3}e^{x}$ is periodic, with a period of	[B] symmetrical about y – axis [D]tangential to x = y = a / 3	1 Marks GATE-CE-1997()
[A] 2π [C] π 24) A discontinuous real function can be expressed a	[B] 2 <i>i</i> π [D] <i>i</i> π	1 Marks GATE-CE-1997()
[A] Tay lor's series and Fourier's series [C]neither Taylor's series nor Fourier's series	B] Taylor's series and not by F [D]not by Taylor's series,but b	
25) The Taylor's series expansion of x is [A] $1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ [C] $x + \frac{x^3}{3!} + \frac{x^5}{5!}$ 26) The infinite series $1 + \frac{1}{2} + \frac{1}{3}$	$[\mathbf{B}] 1 + \frac{x^2}{2!} + \frac{x^4}{4!} \\ [\mathbf{D}] x - \frac{x^3}{3!} + \frac{x^5}{5!}$	1 Marks GATE-CE-1998()
[A] converges [C] oscillates 27) If $x = \sqrt{-1}$, then the value of X^{X} is :	[B] diverges [D]unstable	2 Marks GATE-CE-1998()
[A] $e^{-\pi/2}$ [C]X 28) The infinite series $f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots \infty$ cor	[B] <i>e</i> ^{π/2} [D]1	1 Marks GATE-EIN/IN-2012()
[A] cos(X) [C]Sinh(x)	[B] Sin(x) [D]e ^x	1 Marks GATE-EIN/IN-2010()
 29) Consider the function f(x) = x ³ where x is real. Then the [A] continuous but not differentiable [C] twice differentiable bnut not thrice 	[B] once differentiable but not [D]thrice differentiable	
 ³⁰⁾ For the function of a complex variable W = In z (when mapped in Z-plane as [A] set of radial straight lines [C] set of confocal hyperbolas 	re, W = u + jv and Z = x + jy,the u = [B] set of concentric circles [D]set of confocal ellipses	CONSTANT lines get 2 Marks GATE-ECE/TCE-2006()

The value of the contour integral $\oint_{|z-j|=2} \frac{1}{z^2+4}$ 31) dz in positive sense is 2 Marks GATE-ECE/TCE-2006() [B]-Π/2 [A] j П/2 [C]-j П/2 [D]^{∏/2} 32) If the semi-circular contour D of radius 2 is as shown in the figure. Then the value of the integral $\int_{D}^{0} \frac{1}{(s^2 - 1)}$ σ -i2 2 Marks GATE-ECE/TCE-2007() [A] j⊓ [B] -j⊓ [C] –П [D]Π 33) The equation sin(z) = 10 has 2 Marks GATE-ECE/TCE-2008() ^[A] No real or complex solution ^[B]Exactly two distinct complex solutions [C]_{Aunique solution} [D]An infinite number of complex solutions If $f(z) = c_0 + c_1 z^{-1}$, then $\oint_{Unitcircle} \frac{1 + f(z)}{z} dz$ is given by 34) 1 Marks GATE-ECE/TCE-2009() $[B] 2\Pi (1 + C_0)$ $[A] 2 \prod c_1$ $[D]^{2}\Pi j(1+C_{0})$ $[C]^{2}\Pi_{j}C_{1}$ The value of $\oint_c \frac{dz}{(1+z^2)}$ where C is the contour |z-i/2| = 1 is 35) 2 Marks GATE-EEE-2007() [A] 2 π i [B]π [C]tan⁻¹ z $[D]\Pi i \tan^{-1} z$ 36) The function $f(x) = 2x - x^2 - x^3 + 3$ has 2 Marks GATE-EEE-2011() [A] a maxima at x = 1 and minimum at x = 5[B] a maxima at x = 1 and minimum at x = -5[C] only maxima at x = 1 and $X(z) = \frac{1 - 12z}{z(z - 1)(z - 2)}$ at its poles are [D]only a minimum at x = 537) The residues of a complex function 2 Marks GATE-ECE/TCE-2010() $[\mathbf{B}]^{\frac{1}{2}, -\frac{1}{2} and -1}_{[\mathbf{D}]^{\frac{1}{2}, -1 and \frac{3}{2}}}$ $[A] \frac{1}{2}, -\frac{1}{2} and 1 \\ [C] \frac{1}{2}, 1 and -\frac{3}{2}$ $\frac{-3z+4}{(z^2+4z+5)}dz$ where c is the circle |z| = 1 is given by 38) The value of the integr 2 Marks GATE-ECE/TCE-2011() [A]0 [B]1/10 [C]4/5 [D]1 ³⁹⁾ Let f: $A \rightarrow Bbe a function, and let E and F be subsets of A. Consider the following statements about$ images $S1:f(E\cup F) = f(E) \cup f(F)$ $S2:f(E \cap F) = f(E) \cap f(F)$ Which of the following is true about S1 and S2?

Complex Analysis

	2 Marks GATE-CSE/IT-2001()
[A] Only S1 is correct	[B] Only S2 is correct
[C]Both S1 and S2 are correct	[D]None of S1 and S2 is correct
40) The residence of the function $f(z) = \frac{1}{(z+2)^2(z-2)^2}$ a	t z=2 is 1 Marks GATE-ECE/TCE-2008()
[A]-1/32 [C]1/16	[B]-1/16 [D]1/32
41) The function $f(x) = x + 1 $ on the interval [-2, 0] is	
	1 Marks GATE-ME-1995()
[A] continuous and differentiable	[B]continuous on the integral but not differentiable at all points
[C]neither continuous nor differentiable	[D]differentiable but not continuous
42) i^i , where $i = \sqrt{-1}$,is given by	1 Marks GATE-ME-1996()
[A] O	[B] $e^{\frac{-\pi}{2}}$
$[C]\frac{\pi}{2}$	[D]1
43) The magnitude of the gradient of function $f = xyz^3$ at (
[A]0	1 Marks GATE-ME-1998() [B] 3
[C]8	[D]∞
44) What is the derivative of $f(x) = x$ at $x = 0$?	
	1 Marks GATE-ME-2001()
[A] 1 [C]0	[B] – 1 [D]Does not exit
45) Which of the following functions is not differential	
	1 Marks GATE-ME-2002()
$[A]f(x) = x^2$	[B]f(x) = x - 1
[C]f(x) = 2	[D]f(x) = maximum (x, -x)
46) A regression model is used to express a variable Y a	S a function of another variable X. 1 Marks GATE-ME-2002()
[A] there is a causal relationship between Y and X	[B] a value of X may be used to estimate a value of Y
[C] values of X exactly determine values of Y	[D]there is no causal relationship between Y and X.
47) The minimum point of the function $f(x) = \frac{(x^3)}{3} - x$ is a	at 2 Marks GATE-ME-2001()
[A] x=1	[B]x = -1
[C]x = 0	[D]
$x = \frac{1}{\sqrt{3}}$	2 Marks GATE-ME-2002()
48) The function $f(x, y) = \frac{2x^2 + 2xy - y^3}{4x^2 + 2xy - y^3}$ has	
[A] only one stationary point at (0, 0) [C]two stationary points at (0, 0) and (1, – 1)	[B] two stationary points at $(0, 0)$ and and $(1/6, -1/3)$ [D]no stationary point.
49) The modulus of the complex number $\left(\frac{3+4i}{1-2i}\right)$ is	
+9) memodulus of the complex humber (1-2//is	1 Marks GATE-ME-2010()
[A] 5	[B]√5
[C]1 //5	[D]1/5
50) The function $y = 2 - 3x $	1 Marks GATE-ME-2010()
[A] is continuouğ x∈R and differentiablĕ 🗴 R	[B] is continuous x∈R and differentiable x∈R exceptat x = 3/2
[C] is continuous x ∈ R and differentiable x ∈ R except at x = 2/3	[D] is continuous x∈R except at x = 3 and differentiablĕ x∈R
51) A box contains 2 washers, 3 nuts and 4 bolts. Items without replacement. The probability of drawing 2 was bolts is	s are drawn from the box at random one at a time ashers first followed by 3 nuts and subsequently the 4

bolts is

[A]2/315 [C]1/1260	[B] 1 / 630 [D] 1 / 2520	2 Marks GATE-ME-2010()
 52) Consider the function f(x) = x in the interval - x x i [A] continuous and differentiable. [C] continuous and non-differentiable. 53) A t x = 0, the function f (x) = +1 has 	Et the point x = 0, f(x) is [B] non-continuous and differe [D]neither continuous nor diffe	
[A] a maximum value [C] a singularity	[B] a minimum value [D] a point of inflection	1 Marks GATE-ME-2012()
54) A series expansion for the function $\sin \theta$ is $[A] 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots$ $[C] 1 + \theta + \frac{\theta^2}{2!} + \frac{\theta^3}{3!} - \dots$	$[\mathbf{B}] \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots$ $[\mathbf{D}] \theta + \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots$	1 Marks GATE-ME-2011()
55) The product of two complex numbers 1 + i and 2- [A]7-3i [C]-3-4i	5i is [B] 3–4i [D]7+3i	1 Marks GATE-ME-2011()
56) An analytic function of a complex variable $z = x + iy$ If $u = xy$, the expression for v should be $[A] \frac{(x + y)^2}{2} + k$	is expressed as $f(z) = u(x,y) + iv(x)$	(a, y) where i $= \sqrt{-1}$. 2 Marks GATE-ME-2009()
[A] $\frac{1}{\sqrt{2} + k}$ [C] $\frac{y^2 - x^2}{2} + k$ 57) The distance between the origin and the point neares	$[B]\frac{x^2 - y^2}{2} + k$ $[D]\frac{(x - y)^2}{2} + k$ It to it on the surface $z^2 = 1 + xy$ is	
[A] 1 [C]√ ³	$[B]\frac{\sqrt{3}}{2}$ [D]2	2 Marks GATE-ME-2009()
58) The volume of an object expressed in spherical co- $V = \int_0^{2\pi} \int_0^{\pi/3} \int_0^{\pi} r^2 \sin \phi dr d\phi d\theta$ The value of the integral is	-ordinates is given by	
$[A] \frac{\pi}{3} \\ [C] \frac{2\pi}{3}$	$\begin{bmatrix} \mathbf{B} \end{bmatrix} \frac{\pi}{6}$ $\begin{bmatrix} \mathbf{D} \end{bmatrix} \frac{\pi}{4}$	2 Marks GATE-ME-2004()
 59) The divergence of the vector field (x-y) i+ (y-x) j+ (x [A] 0 [C] 2 	[B] 1 [D] 3	1 Marks GATE-ME-2008()
60) The integral $\oint f(z) dz$ evaluated around the unit circle [A] $2\pi i$	[B] 4 i	5 Z IS 2 Marks GATE-ME-2008()
[C]-2 ⁻ i 61) The length of the curve $y = \frac{2}{3}x^{3/2}$ between x=0 and x= [A]0.27	[D]0 =1 is [B] 0.67	2 Marks GATE-ME-2008()
[C]1	[D]1.22	

Complex Analysis

Key Paper									
1.	Α	2.	С	3.	D	4.	В	5.	Α
6.	D	7.	С	8.	D	9.	В	10.	С
11.	D	12.	D	13.	В	14.	Α	15.	D
16.	В	17.	В	18.	Α	19.	Α	20.	Α
21.	С	22.	D	23.	Α	24.	D	25.	D
26.	D	27.	Α	28.	В	29.	Α	30.	В
31.	D	32.	Α	33.	Α	34.	D	35.	В
36.	С	37.	с	38.	Α	39.	Α	40.	Α
41.	В	42.	В	43.	С	44.	с	45.	Α
46.	В	47.	Α	48.	В	49.	В	50.	С
51.	С	52.	с	53.	D	54.	В	55.	Α
56.	С	57.	Α	58.	Α	59.	D	60.	Α
61.	Α								

1) The Newton-Raphson method is to be used to find the root of the equation f(x)=0 where x_0 is the initial approximation and f' is the derivative of f. The method converges

1 Marks GATE-CSE/IT-1999()

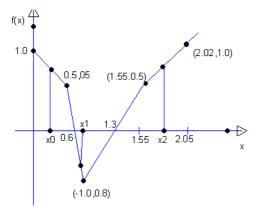
- [A] always [B] only if f is a polynomial [D]None of the above [C]only if f(%)<0
- 2) The Newton-Raphson method is used to find the root of the equation $x^2 2 = 0$ If the iterations are started form -1, the iterations will

1 Marks GATE-CSE/IT-1997()

[A] converge to – 1	[B]converge to⁄2
[C]converge to – $\sqrt{2}$	[D]not converge
3) Using a forward Euler method to solve y"(t) = f(t), y(t) following values of y in the first four iterations:	D), $y''(0) = 0$ with a step size of h, we obtain the
	2 Marks GATE-CSE/IT-1997()
[A]0, hf(0), h(f(0) + f(h)) and h(f(0) + f(h) = f(2h))	[B]0, 0 h2 f(0) and 2h2f(0)+f(h)
[C]0,0,h2f(0)3h2f(0)	[D]0, 0, hf(0) + h2f(0) and hf(0) + h2f(0)+hf(h)
ch er	

4) The trapezoidal method to numerically obtain $\int_{a}^{\int_{a}^{b} f(x)} dx$ has an error E bounded by $\bar{}$ max f''(x) x \in [a,b] 12

where h is the width of the trapezoids. The minimum number of trapezoids guaranteed to ensure E $\leq 10^{-4}$ is computing in 7 using f = 1/x is


2 Marks GATE-CSE/IT-1997()

[A]60	[B]100
[C]600	[D]10000

5) Theiteration formulatofind the square root of a positive real number busing the Newton Raphson method is 2 Marks GATE-CSE/IT-1995()

$[A] X_{k+1} = \frac{X_k^2 + b}{2X_k}$	[B] $x_{k+1} = 3(x_k + b)$
$[C]x_{k+1} = x_k - 2x_k/x_k^2 + b$	[D]None of the above

6) A piecewise linear function f(x) is plotted using thick solid lines in the figure below (the plot is drawn to scale).

If we use the Newton-Raphson method to find the roots of f(x)=0 using x0, x1, and x2 respectively as initial guesses ,the obtained would be

2 Marks GATE-CSE/IT-2003()

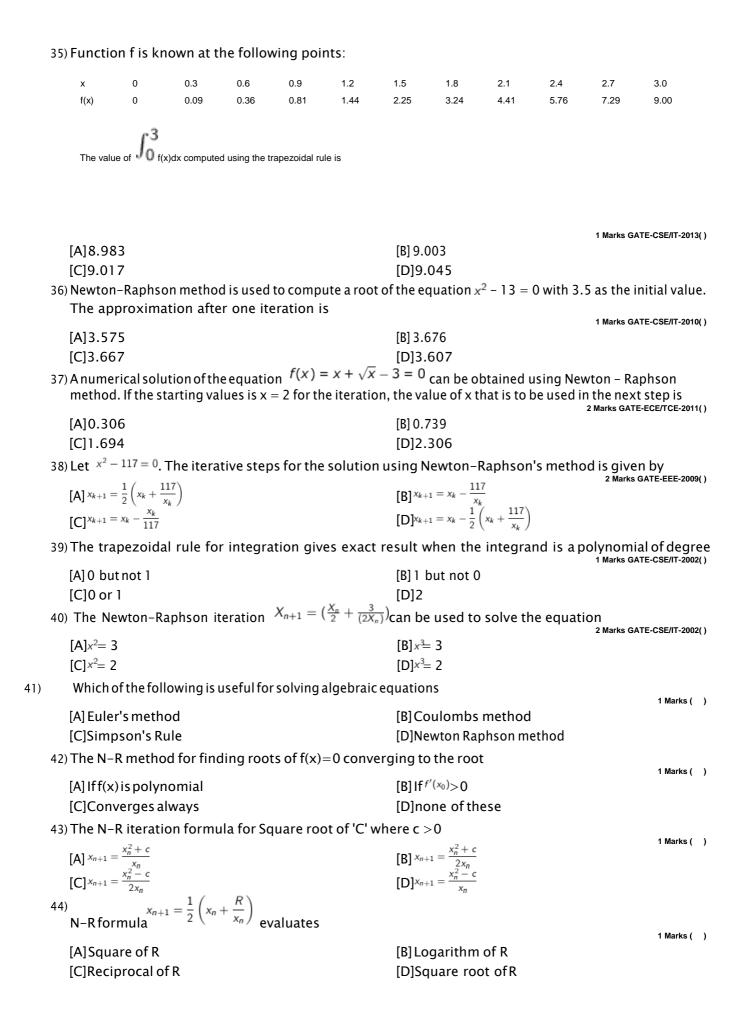
[A] 1.3, 0.6 and 0.6 respectively	[B]0.6,0.6 and 1.3 respectively
[C]1.3,1.3 and 0.6 respectively	[D]1.3, 0.6 and 1.3 respectively

7) Simpson's rule for integration gives exact result when f(x) is a polynomial of degree 2 Marks GATE-ECE/TCE-1993()

[A] 1	[B] 2
[C]3	[D]4

8) When the Newton-Raphson method is applied to solve the equation $f(x) = x^3 + 2x - 1 = 0$, the solution at the end of the first iteration with the initial guess value as $x_0 = 1.2$ is

[A]–0.82 [C]0.705	[B] 0.49 [D]1.69	2 Marks GATE-EEE-2013()
9) Solution of the variables x1 and x2 for the following e Raphson iterative method. equation(i) $10x_2 sinx_1 - 8 = 0$ equation(ii) $10x_2^2 - 10x_2 cosx_1 - 0.6 = 0$	quations is to be obtained by employ	ying the Newton–
Assuming the initial valued $x_1 = 0.0$ and $x_2 = 1.0$, the [A] $\begin{bmatrix} 10 & -0.8 \\ 0 & -0.6 \\ 0 & -0.8 \end{bmatrix}$ [C] $\begin{bmatrix} 0 & -0.8 \\ 10 & -0.6 \end{bmatrix}$	$\begin{bmatrix} \mathbf{B} \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} \\ \begin{bmatrix} \mathbf{D} \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 10 & -10 \end{bmatrix}$	2 Marks GATE-EEE-2011()
10) The value of $\int_{1}^{2} \left(\frac{1}{x}\right) dx$ computed using Simpson's rul [A] 0.69430 [C] 0.69325 11) $\int_{1.5}^{1.5} dx$	[B] 0.69385 [D] 0.6941 5	2 Marks GATE-EEE-1998()
The estimate of $\int_{0.5}^{1.5} \frac{dx}{x}$ obtained using Simpson's rules values by	with three-point function evaluatior	1 Marks GATE-CE-2012()
[A]0.235 [C]0.024	[B] 0.068 [D] 0.012	
x 0 0.25 0.5 0.75 1.0 F(x) 1 0.9412 0.8 0.64 0.50	ained for values of x at intervals o	f0.25.
The value of the integral of the function betwee [A]0.7854 [C]3.1416 13) The square root of a number N is to be obtained by a	[B] 2.3562 [D]7.5000 pplying the Newton Raphson iteration	2 Marks GATE-CE-2010() ONS to the
equation ^{x²} - N = 0. If i denotes the iteration index, t [A] $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{x_i} \right)$ [C] $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N^2}{x_i} \right)$	$[\mathbf{B}]\mathbf{x}_{i+1} = \frac{1}{2} \left(\mathbf{x}_i^2 + \frac{N}{\mathbf{x}_i^2} \right)$ $[\mathbf{D}]\mathbf{x}_{i+1} = \frac{1}{2} \left(\mathbf{x}_i - \frac{M}{\mathbf{x}_i} \right)$	1 Marks GATE-CE-2011()
14) In the solution of the following set of linear equations 5x+y+2z=34; 4y-3z=12; and 10x-2y+z=-4; the pivots for elimination of x and y are	by Gauss elimination using partial p	-
[A] 10 and 4 [C]5 and 4	[B] 10 and 2 [D]5 and -4	2 Marks GATE-CE-2009()
15) A 2^{nd} degree polynomial, f(x), has values of 1, 4, ar integral $\int_0^2 f(x) dx$ is to be estimated by applying the tra- "true value – approximate value") in the estimated	pezoidal rule to this data. What is th	
[A]–4/3 [C]0 16) The following equation needs to be numerically solve	[B] -2/3 [D]2/3	od
$x^3 + 4x - 9 = 0$ The iterative equation for this purpo	ose is (k indicates the iteration leve) 2 Marks GATE-CE-2007()
$[C]^{x_{k+1}} = x_k - 3x_k^2 + 4$	$\begin{bmatrix} B \end{bmatrix}^{x_{k+1}} = \frac{3x_k^3 + 4}{2x_k^2 + 9} \\ \begin{bmatrix} D \end{bmatrix}^{x_{k+1}} = \frac{4x_k^2 + 3}{9x_k^2 + 2} \end{bmatrix}$	


17) Area bounded by the curve $y = x^2$ and lines $x = 4$ and		E 4007()
[A]64 [C]128/3	1 Marks GATE-CE [B] 64/3 [D] 1 28/4	E-1997()
18) The extremum (minimum or maximum) point of a $\frac{df(x)}{dx} = 0$ using the Newton - Raphson method 1 of $\frac{df(x)}{dx}$	function f(x) is to be determined by solving	
$\frac{dx}{dx} = 0$ using the Newton – Raphson method . Let ^{<i>t</i>} value of x after two iterations ^(x₂) is	$f(x) = x^3 - 6x$ and $x_0 = 1$ be the initial guess of x . The	e
[A]0.0141	2 Marks GATE-EIN [B] 1.4142	I/IN-2011()
[C]1 4167	[0]1 5000	
19) For $\mathbf{k} = 0, 1, 2, \frac{1}{3} \dots 2$, the steps of Newton–Raphsor $x_{k+1} = \frac{1}{3} x_k + \frac{1}{3} x_k^2$		iven as
Starting from a suitable initial choice as k tends to ∞	, the iterate x_k tends.to 2 Marks GATE-EIN/IN	N-2006()
[A]1.7099 [C]3.1251	[B] 2.2361 [D]5.0000	()
20) Identify the Newton – Raphson iteration scheme for		
$[A] x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$ $[C] x_{n+1} = \frac{2}{x_n}$	$[B] x_{n+1} = \frac{1}{2} \left(x_n - \frac{2}{x_n} \right)$ 2 Marks GATE-EIN/IN	N-2007()
	$[D]^{x_{n+1}} = \sqrt{2 + x_n}$	
21) Using secant method , the first approximation to the estimates $x_1 = 9$ and $x_2 = 4$ is		itial 2 Marks ()
[A]5.9563	[B] 5.1111	2 Marks ()
[C]5.5014 22) Using Newton- Raphson method the first approximation of the f	[D]5.6182 ation to a real root of the equation $x^5=3$ is	
(take initial approximation $x_0=1$)		1 Marks ()
[A]1.1	[B]1.2	
[C]1.3 23) Starting from $T_0 = 1$ one step of Newton-Raphson m	[D]1.4 we the dual in solving the equation $x^3 + 3x - 7 = 0$ of	
the next value x^{1} as		-
[A]0.5	[B] 1.5	1 Marks ()
[C]0.75	[D]1.25	
24) Given that $\frac{dy}{dx} = x^2 + y^2$; y(0) = 1 , Find y(0.02) usin	g modified method of Euler . (Take step size h	= 0.02) 2 Marks ()
[A]1.0424	[B] 1.0204	
[C]1.0324	[D]1.0414	
²⁵⁾ Given that $\frac{dy}{dx} = (1 + xy); \ y(0) = 1$. Using Taylor's Series expansion upto h^2 term (take h = 0.5)	Series method find y(0,1) by considering the Ta	aylor's
[A]1.011	[B] 1.115	2 Marks ()
[C]1.015	[D]1.105	
26) Given that $\frac{dy}{dx} = (1 + xy); \ y(0) = 1$ Series expansion upto h^2 term (take h = 0.5)	eries method find y(0,1) by considering the Tayl	lor's
		2 Marks ()
[A]1.011 [C]1.015	[B] 1.115 [D] 1.105	
27) The first approximation of $xe^{x^{-2}} = 0$, which lies in [0		

$ \begin{bmatrix} A \\ 0.7676 \\ [B \\ 0.7353 \\ [C \\ 0.7962 \\ [D \\ 0.4632 \end{bmatrix} $ 28) The initial approximation of $3x = \cos x + 1$ is 1, then the first approximation by using Newton-Raphson method is $ \begin{bmatrix} A \\ 0.6338 \\ [C \\ 0.6093 \\ [C \\ 0.6093 \\ C \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$			1 Marks ()
28) The initial approximation of $3x = \cos x + 1$ is 1, then the first approximation by using Newton–Raphson method is [A]0.6338 [B]0.6200 [C]0.6093 [D]0.6123 29) If n'is the number of sub-intervals then which of the following is not a value for 'n' to use Simpson's 3/8 rule [A]6 [B]9 [Marka ()] [C]12 [D]16 30) Using the bisection method find the negative root of $x^3 - 4x + 9 = 0$ correct to the three decimal places 2 Marka () [C]-2.406 [D]None 31) Use Secant method to determine the root of the equation $\cos x = xe^x$ with initial approximation $x_0 = 0$ and $x_1 = 1$. What is x_2 ? [A]1 [B]-2.178 [C]0.3147 [D]0.4467 32) Match the following and choose the correct combination Group-1 Group-1 Group-11 E. Newton–Raphson method 1. Solving nonlinear equations F. Rung-kutta method 2. Solving inear simultaneous equations F. Rung-kutta method 2. Solving inear simultaneous equations G. Simpson's Rule 3. Solving ordinary differential equations H. Gausselimination 4. Numerical integration S. Interpolation G. Calculation of Eigen values [A]E-6, F-1, G-5, H-3 [B]E-1, F-6, G-4, H-3 30 The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton–Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECEPTCE-2005() [A]Z/3 [B]4/3	[A]0.7676	[B] 0.7353	
method is2 Marks ()[A] 0.63338[B] 0.6200[C] 0.6093[D] 0.612329) If 'n'is the number of sub-intervals then which of the following is not a value for 'n' to use Simpson's 3/8 rule[B] 9[A] 6[B] 9[C] 12[D] 1630) Using the bisection method find the negative root of $x^3 - 4x + 9 = 0$ correct to the three decimal places 2 Marks ()[A] - 2.506[B] - 2.706[C] - 2.406[D] None31) Use Secant method to determine the root of the equations $x_0 = 0$ and $x_1 = 1$. What is x_2 ?[A] 1[B] - 2.178[C] 0.3147[B] - 2.178[C] 0.3147[D] 0.446732) Mark the following and choose the correct combinationCroup-1Croup-IIE. Newton-Raphson method1. Solving nonlinear equationsF. Rung-kutta method2. Solving linear simultaneous equationsG. Simpson's Rule3. Solving ondinary differential equationsH. Gauss elimination4. Numerical integration 5. InterpolationG. Simpson's Rule3. Solving ordinary differential equationsH. Gauss elimination4. Numerical integration 5. Interpolation[A] E-6, F-1, G-5, H-3[B] E-1, F-6, G-4, H-3[C] E-1, F-3, G-4, H-2[D] E-5, F-3, G-4, H-133) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton - Raphson method. If $x = 2$ is taken as the initial approximation of the solved using the Newton - Raphson method. If $x = 2$ is taken as the initial approximation of the solved using the Newton - Raphson method. If $x = 2$ is taken as the initial approximation of the solved using the Newton	[C]0.7962	[D]0.4632	
$ \begin{bmatrix} [A] 0.6338 \\ [C] 0.6093 \\ [D] 0.6123 \end{bmatrix} $ $ \begin{bmatrix} [B] 0.6200 \\ [D] 0.6123 \end{bmatrix} $ $ \begin{bmatrix} [B] 0.6203 \\ [D] 0.6123 \end{bmatrix} $ $ \begin{bmatrix} [B] 0.6203 \\ [D] 0.6123 \end{bmatrix} $ $ \begin{bmatrix} [A] 6 & [B] 0 & [B] $		$\cos x + 1$ is 1, then the first approximation by using Newton-Raph	ison
$ \begin{bmatrix} [0] 0.6093 \\ [0] 0.6123 \end{bmatrix} $ $ \begin{bmatrix} [0] 0.6123 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			2 Marks ()
29) If 'n'is the number of sub-intervals then which of the following is not a value for 'n' to use Simpson's 3/8 rule $[A]_{6}$ [B] 9 [C] 12 [D] 16 30) Using the bisection method find the negative root of $x^{3} - 4x + 9 = 0$ correct to the three decimal places 2 Marks () [A] - 2.506 [B] - 2.706 [C] - 2.406 [D] None 31) Use Secant method to determine the root of the equation $\cos x = xe^{x}$ with initial approximation $x_{0} = 0$ and $x_{1} = 1$. What is x_{2} ? [A] 1 [B] - 2.178 [C] 0.3147 [D] 0.4467 32) Match the following and choose the correct combination Group-I Group-II E. Newton-Raphson method 1. Solving nonlinear equations F. Rung-kutta method 2. Solving innear simultaneous equations G. Simpson's Rule 3. Solving ordinary differential equations H. Gausselimination 4. Numerical integration S. Interpolation [A] E-6, F-1, G-5, H-3 [B] E-1, F-6, G-4, H-3 [A] E-6, F-1, G-5, H-3 [B] E-1, F-6, G-4, H-3 [A] E-6, F-1, G-5, H-3 [B] E-1, F-6, G-4, H-3 [A] E-6, F-1, G-5, H-3 [B] E-1, F-6, G-4, H-3 [A] E-6, F-1, G-5, H-3 [B] E-1, F-6, G-4, H-1 33) The equation $x^{3} - x^{2} + 4x - 4 = 0$ is to be solved using the Newton-Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECETTCE-2005() [A] 2/3 [B] 4/3			
to use Simpson's 3/8 rule [A]6 [B]9 $1^{Marks (1)}$ [C]12 [D]16 30) Using the bisection method find the negative root of $x^3 - 4x + 9 = 0$ correct to the three decimal places 2 Marks (1) [A] - 2.506 [B] - 2.706 [D]None 31) Use Secant method to determine the root of the equation $cos x = xe^s$ with initial approximation $x_0 = 0$ and $x_1 = 1$. What is x_{2} ? [A]1 [B] - 2.178 [D] - 4.467 32) Mark the following and choose the correct combination Group-1 Group-I E. Newton-Raphson method 1. Solving nonlinear equations F. Rung-kutta method 2. Solving linear simultaneous equations F. Rung-kutta method 2. Solving ordinary differential equations G. Simpson's Rule 3. Solving ordinary differential equations H. Gauss elimination 4. Numerical integration S. Interpolation G. Calculation of Eigenvalues [A]E-6, F-1, G-5, H-3 [B]E-1, F-6, G-4, H-3 [C]E-1, F-3, G-4, H-2 [D]E-5, F-3, G-4, H-1 33) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton-Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECETCE-2005(1) [A]2/3 [B]4/3			
$ \begin{bmatrix} A \end{bmatrix} 6 \\ [C] 12 \\ [D] 16 \\ \hline \\ 30 Using the bisection method find the negative root of x^3 - 4x + 9 = 0 correct to the three decimal places 2^{Marks}() \begin{bmatrix} A \end{bmatrix} - 2.506 \\ [C] - 2.406 \\ E \end{bmatrix} - 2.706 \\ \hline \\ \begin{bmatrix} C \end{bmatrix} - 2.406 \\ E \end{bmatrix} - 2.706 \\ \hline \\ \begin{bmatrix} C \end{bmatrix} - 2.406 \\ E \end{bmatrix} - 2.706 \\ \hline \\ \begin{bmatrix} D \end{bmatrix} None \\ \hline \\ $			
$ \begin{bmatrix} C] 1 2 & [D] 1 6 \\ 30) Using the bisection method find the negative root of x^3 - 4x + 9 = 0 correct to the three decimal places 2 Marks () \begin{bmatrix} A - 2.506 & [B] - 2.706 \\ \hline [C] - 2.406 & [D] None \\ 31) Use Secant method to determine the root of the equation \cos x = xe^x with initial approximation x_0 = 0 and x_1 = 1. What is x_2? \begin{bmatrix} A \\ 1 & [B] - 2.178 \\ \hline [C] 0.3147 & [D] 0.4467 \\ 32) Match the following and choose the correct combination Group-1 & Group-II \\ E. Newton-Raphson method 1. Solving nonline ar equations F. Rung-kutta method 2. Solving linear simultaneous equations G. Simpson's Rule 3. Solving ordinary differential equations F. Rung-kutta method 4. Numerical integration - S. Interpolation - S. Solving integrating - S. Solving integrating - S. Solving - S. Sol$	[A]6	[B] 9	1 Marks ()
[A] - 2.506 [B] - 2.706 [D] None [D]			
$ \begin{bmatrix} [A] - 2.506 \\ [C] - 2.406 \\ [D]None \end{bmatrix} $ $ 31) Use Secant method to determine the root of the equation \cos x = xe^x with initial approximation x_0 = 0 and x_1 = 1. What is x_2? \begin{bmatrix} [A] 1 \\ [B] - 2.178 \\ [C] 0.3147 \\ [D] 0.4467 \end{bmatrix} 2^{Marks ()} 32) Match the following and choose the correct combination Group-1 \\ E. Newton-Raphson method 1. Solving nonlinear equations F. Rung-kutta method 2. Solving nonlinear equations F. Rung-kutta method 2. Solving ordinary differential equations G. Simpson's Rule 3. Solving ordinary differential equations H. Gauss elimination 4. Numerical integration 5. Interpolation 6. Calculation of Eigenvalues \begin{bmatrix} [A] E - 6, F - 1, G - 5, H - 3 \\ [C] E - 1, F - 3, G - 4, H - 2 \\ [C] E - 1, F - 3, G - 4, H - 2 \\ [C] E - 1, F - 3, G - 4, H - 2 \\ [C] E - 1, F - 3, G - 4, H - 2 \\ [D] E - 5, F - 3, G - 4, H - 1 \\ 33) The equation x^3 - x^2 + 4x - 4 = 0 is to be solved using the Newton - Raphson method. If x = 2 is taken as the initial approximation of the solved using the Newton - Raphson method will be 2 \\ Marks GATE+CEPTCE-2007() \\ [A] 2/3 \\ \begin{bmatrix} B] 4/3 \end{bmatrix}$	30) Using the bisection method find t	he negative root of $x^3 - 4x + 9 = 0$ correct to the three decimal	
31) Use Secant method to determine the root of the equation $\cos x = xc^x$ with initial approximation $x_0 = 0$ and $x_1 = 1$. What is x_2 ? [A]1 [B]-2.178 [D]0.4467 32) Match the following and choose the correct combination Group-I Group-II E. Newton-Raphson method 1. Solving nonlinear equations F. Rung-kutta method 2. Solving linear simultaneous equations G. Simpson's Rule 3. Solving ordinary differential equations H. Gauss elimination 4. Numerical integration 5. Interpolation 6. Calculation of Eigenvalues [A]E-6, F-1, G-5, H-3 [B]E-1, F-6, G-4, H-3 [C]E-1, F-3, G-4, H-2 [D]E-5, F-3, G-4, H-1 33) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton-Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECE/TCE-2007() [A]2/3 [B]4/3	[A]-2.506	[B] -2.706	
approximation $x_0 = 0$ and $x_1 = 1$. What is x_2 ?[A] 1[B] - 2.178[C] 0.3147[D] 0.446732) Match the following and choose the correct combinationGroup-IGroup-IIE. Newton-Raphson method1. Solving nonlinear equationsF. Rung-kutta method2. Solving linear simultaneous equationsG. Simpson's Rule3. Solving ordinary differential equationsH. Gausselimination4. Numerical integration5. Interpolation5. InterpolationGIE-6, F-1, G-5, H-3[B] E-1, F-6, G-4, H-3[C] E-1, F-3, G-4, H-2[D] E-5, F-3, G-4, H-133) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton - Raphson method. If $x = 2$ is taken as the initial approximation of the solved using the Newton - Raphson method will be 2 Marks GATE-ECETCE-2007()[A] 2/3[B] 4/3	[C]-2.406	[D]None	
[A] 1 [B] - 2.178 [D] 0.4467 32) Match the following and choose the correct combination Group-1 Group-II E. Newton-Raphson method 1. Solving nonlinear equations F. Rung-kutta method 2. Solving linear simultaneous equations G. Simpson's Rule 3. Solving ordinary differential equations H. Gauss elimination 4. Numerical integration 5. Interpolation 6. Calculation of Eigenvalues $[A]E-6, F-1, G-5, H-3 [B]E-1, F-6, G-4, H-3 [D]E-5, F-3, G-4, H-1]$ 33) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton - Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECETTCE-2005() [A]2/3 [B]4/3	31) Use Secant method to determine	etherootoftheequation $cos x = xe^x$ with initial	
[A] 1[B] - 2.178[C] 0.3147[D] 0.446732) Match the following and choose the correct combinationGroup-1Group-IIE. Newton-Raphson method1. Solving nonlinear equationsF. Rung-kutta method2. Solving linear simultaneous equationsG. Simpson's Rule3. Solving ordinary differential equationsH. Gauss elimination4. Numerical integration5. Interpolation6. Calculation of Eigenvalues[A] E-6, F-1, G-5, H-3[B] E-1, F-6, G-4, H-3[C] E-1, F-3, G-4, H-2[D] E-5, F-3, G-4, H-133) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton-Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECE/TCE-2007()[A] 2/3[B] 4/3	approximation $x_0 = 0$ and x_1	$=1$. What is x_2 ?	
[C]0.3147[D]0.446732) Match the following and choose the correct combination Group-IGroup-IIE. Newton-Raphson method1. Solving nonlinear equationsF. Rung-kutta method2. Solving linear simultaneous equationsG. Simpson's Rule3. Solving ordinary differential equationsH. Gauss elimination4. Numerical integration5. Interpolation6. Calculation of Eigenvalues[A]E-6, F-1, G-5, H-3[B]E-1, F-6, G-4, H-3[C]E-1, F-3, G-4, H-2[D]E-5, F-3, G-4, H-133) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton-Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECE/TCE-2007()[A]2/3[B] 4/3	[4]]	[D] 2170	2 Marks ()
32) Match the following and choose the correct combinationGroup-IGroup-IIE. Newton-Raphson method1. Solving nonlinear equationsF. Rung-kutta method2. Solving linear simultaneous equationsG. Simpson's Rule3. Solving ordinary differential equationsH. Gauss elimination4. Numerical integration5. Interpolation6. Calculation of Eigenvalues[A]E-6, F-1, G-5, H-3[B]E-1, F-6, G-4, H-3[C]E-1, F-3, G-4, H-2[D]E-5, F-3, G-4, H-133) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton-Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECE/TCE-2007()[A]2/3[B] 4/3			
Group-IGroup-IIE. Newton-Raphson method1. Solving nonlinear equationsF. Rung-kutta method2. Solving linear simultaneous equationsG. Simpson's Rule3. Solving ordinary differential equationsH. Gauss elimination4. Numerical integrationS. Interpolation5. Interpolation6. Calculation of Eigenvalues[A]E-6, F-1, G-5, H-3[B]E-1, F-6, G-4, H-3[C]E-1, F-3, G-4, H-2[D]E-5, F-3, G-4, H-133) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton- Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECETCE-2007()[A]2/3[B]4/3			
E. Newton-Raphson method1. Solving nonlinear equationsF. Rung-kutta method2. Solving linear simultaneous equationsG. Simpson's Rule3. Solving ordinary differential equationsH. Gauss elimination4. Numerical integration5. Interpolation6. Calculation of Eigenvalues[A]E-6, F-1, G-5, H-3[B]E-1, F-6, G-4, H-3[C]E-1, F-3, G-4, H-2[D]E-5, F-3, G-4, H-133) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton- Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECE/TCE-2007()[A]2/3[B] 4/3			
F. Rung-kutta method 2. Solving linear simultaneous equations G. Simpson's Rule 3. Solving ordinary differential equations H. Gauss elimination 4. Numerical integration 5. Interpolation 6. Calculation of Eigenvalues [A]E-6, F-1, G-5, H-3 [B]E-1, F-6, G-4, H-3 [C]E-1, F-3, G-4, H-2 [D]E-5, F-3, G-4, H-1 33) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton- Raphson method. If x = 2 is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECE/TCE-2007() [A]2/3 [B] 4/3	-	•	
G. Simpson's Rule 3. Solving ordinary differential equations H. Gauss elimination 4. Numerical integration 5. Interpolation 5. Interpolation 6. Calculation of Eigenvalues 2 Marks GATE-ECE/TCE-2005() [A]E-6,F-1,G-5,H-3 [B]E-1,F-6,G-4,H-3 [C]E-1,F-3,G-4,H-2 [D]E-5,F-3,G-4,H-1 33) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton-Raphson method. If x = 2 is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECE/TCE-2007() [A]2/3 [B] 4/3	-		
H. Gauss elimination4. Numerical integration 5. Interpolation 6. Calculation of Eigenvalues[A]E-6, F-1, G-5, H-3 [C]E-1, F-3, G-4, H-2[B]E-1, F-6, G-4, H-3 [D]E-5, F-3, G-4, H-133) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton-Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECE/TCE-2007()[A]2/3[B] 4/3	-	-	
5. Interpolation 6. Calculation of Eigenvalues [A]E-6, F-1, G-5, H-3 [C]E-1, F-3, G-4, H-2 [D]E-5, F-3, G-4, H-1 33) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton-Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECE/TCE-2007() [A]2/3 [B] 4/3			
$ \begin{array}{c} \text{6. Calculation of Eigenvalues} \\ \hline \text{[A]E-6, F-1, G-5, H-3} \\ \text{[C]E-1, F-3, G-4, H-2} \\ \text{[D]E-5, F-3, G-4, H-1} \\ \hline \text{[C]E-1, F-3, G-4, H-2} \\ \hline \text{[D]E-5, F-3, G-4, H-1} \\ \hline \text{[C]E-1, F-3, G-4, H-2} \\ \hline \text{[C]E-1, F-3, G-4, H-1} \\ \hline \text{[C]E-1, F-3, G-4, H-2} \\ \hline \text{[C]E-1, F-3, G-4, H-2} \\ \hline \text{[C]E-1, F-3, G-4, H-1} \\ \hline \text{[C]E-1, F-3, H-1} \\$	The Gauss chimitation		
$ \begin{bmatrix} A \end{bmatrix} E-6, F-1, G-5, H-3 \\ \begin{bmatrix} B \end{bmatrix} E-1, F-6, G-4, H-3 \\ \begin{bmatrix} D \end{bmatrix} E-5, F-3, G-4, H-1 \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-2 \\ \begin{bmatrix} D \end{bmatrix} E-5, F-3, G-4, H-1 \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-2 \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-1 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-1 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, G-4, H-3 \\ \end{bmatrix} \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, F-3, G-4, H-3 \\ \end{bmatrix} \\ \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, F-3, G-4, H-3 \\ \end{bmatrix} \\ \\ \begin{bmatrix} B \end{bmatrix} E-1, F-3, F-3, F-3, F-3, F-3, F-3, F-3, F-3$		-	
[A] E-6, F-1, G-5, H-3 [C] E-1, F-3, G-4, H-2 [D] E-5, F-3, G-4, H-1 33) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton-Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be 2 Marks GATE-ECE/TCE-2007() [A] 2/3 [B] 4/3		2 Marks GATE-ECE/I	CE-2005()
33) The equation $x^3 - x^2 + 4x - 4 = 0$ is to be solved using the Newton–Raphson method. If $x = 2$ is taken as the initial approximation of the solution, then the next approximation using this method will be [A] 2/3 [B] 4/3		[B]E-I,F-6,G-4,H-3	()
the initial approximation of the solution, then the next approximation using this method will be ^{2 Marks GATE-ECE/TCE-2007()} [A]2/3 [B] 4/3			
[A]2/3 [B]4/3		solution, then the next approximation using this method will be	
	[A]2/3		
	[C]1	[D]3/2	

34) The recursion relation to solve x $= e^{-x}$ using Newton Raphson method is

2 Marks GATE-ECE/TCE-2008()

$[A] x_{n+1} = e^{-x_n}$	$[\mathbf{B}] x_{n+1} = x_n - e^{-x_n}$
$[\mathbf{C}]x_{n+1} = (1+x_n)\frac{e^{-x_n}}{1+e^{-x_n}}$	$[D]X_{n+1} = \frac{X_n^2 - e^{Xn}(1 + X_n) - 1}{X_n - e^{-Xn}}$

$_{45)}f(x) = x^5 + x + 2 = 0$ has	1 Marks())
[A] All complex roots	[B] All real roots
[C]1 real&4 complex roots	[D]2 real roots &3 complex roots
46) x 0 0.25 0.5 0.75 1.00	
f(x) 1 0.9412 0.8 0.64 0.50	
The value of the integral of the function betwee	n the limit 0 to 1 using simpson's rule is
[A]0.7854	[B] 2.3562
[C]3.1416	[D]7.5000
47) Newton-Raphson iteration formula for finding $\sqrt[3]{C}$, w	
$[A] x_{n+1} = \frac{2x_n^3 + \sqrt[3]{c}}{3x_n^2}$	$[\mathbf{B}] x_{n+1} = \frac{2x_n^3 - \sqrt[3]{c}}{3x_n^2} $ 1 Marks ()
$3x_n^2$ $2x^3 + C$	
$[\mathbf{C}]x_{n+1} = \frac{2x_n^3 + C}{3x_n^2}$	$[D]x_{n+1} = \frac{2x_n^2 - c}{3x_n^2}$
⁴⁸⁾ $\int \frac{dy}{dx} = xy$ given that $y = 1$ at $x = 0$. Using Euler me	
For ax given that $y = 1$ at $x = 0$. Using Euler me	thod taking the step size 0.1, the y at x = 0.4 is 2 Marks ()
[A]1.0611	[B] 2.4680
[C]1.6321	[D]2.4189
49) The root of the equation $x^3 - 4x - 9 = 0$ using the bis	
[A]2.4065	2 Marks () [B] 2.6875
[C]2.750	[D]None of the above
50) The Newton-Raphson iteration $x_{n+1} = \frac{x_n}{2} + \frac{3}{2x_n} \cosh \frac{x_{n+1}}{2x_n} + \frac{3}{2x_n} + \frac{3}{2x_n} \cosh \frac{x_{n+1}}{2x_n} + \frac{3}{2x_n} + $	
The Newton-Raphson iteration 2^{2} $2x_{n}$ can be	be used to solve the equation 1 Marks ()
$[A] x^2 = 3$	$[B]x^3 = 3$
$[C]x^2 = 2$	$[D]x^3 = 2$
51) The 2's complement representation of (- 539)10) is hexadecimal is 1 Marks ()
[A] ABE	[B] DBC
[C]DE5	[D]9E7
52) The decimal value of 0.2	
[A] is equivalent to the binary value 0.1	1 Marks ()
[A] is equivalent to the binary value 0.1	
	[B] is equivalent to the binary value 0.01
[C] is equivalent to the binary value 0.00111	[D]cannot be represented precisely in binary
53)	$\int_{-\infty}^{\infty} x e^{x} dx$
Minimum number of equivalent sub intervals needed	Ito approximate J_1 to an accuracy at least
$\frac{1}{3} \times 10^{-6}$ using Trapezoidal rule	
	2 Marks () [B] 100
[A]1000 e [C]100 e	[D]1000
54) The order of error is the Simpson's rule for numerica	II INTEGRATION WITH A STEP SIZE N IS 1 Marks GATE-ME-1997()
[A] h	[B] <i>h</i> ²
$[C]h^3$	[D] <i>h</i> ⁴

55) Following are the values of a function y(x) : y(-1)=5, y(0), $y(1) = 8\frac{dv}{dx}$ at x=0 as per Newton's central difference is

[A]0	[B]1.5
[C]2.0	[D]3.0

56) Match the CORRECT pairs.

Numerical Integration Scheme	Order of Fitting Polynomial
P. Simpson's 3/8 Rule	1. First
Q. Trapezoidal Rule	2. Second
R. Simpson's 1/3 Rule	3. Third

[A]P-2, Q-1, R-3 [B]P-3, Q-2, R-1 [C]P-1, Q-2, R-3 [D]P-3, Q-1, R-2

57) We wish to solve $x^2 - 2 = 0$ by Newton Raphson technique. Let the initial guess b $x_0 = 1.0$. Subsequent estimate of x (i.e^x₁) will be 2 Marks GATE-ME-1999()

[A]1.414	[B]1.5
[C]2.0	[D]none ofthese

58) The accuracy of Simpson's rule quadrature for a step size h is

$[A]^{\mathcal{O}(h^2)}$	$[\mathbf{B}]^{\mathcal{O}(h^3)}$
$[C]O(h^4)$	$[D\mathfrak{P}^{(h^5)}]$

59) The values of a function f(x) are tabulated below

x	0	1	2	3
f(x)	1	2	1	10

Using Newton's forward difference formula, the cubic polynomial that can be fitted to the above data, is ^{2 Marks GATE-ME-2004()}

$[A] Zx + 7x^{2} bX + Z$	[B] 2x - 1x - 6X - 2
$[C]x^{2}7x^{2}6x+1$	$[D]2x^{3}-7x^{2}+6x+1$

60) Starting from $x_0 = 1$ one step of Newton – Raphson method in solving the equation $x^3 + 3x - 7$ gives the next value (*) as

2 Marks GATE-ME-2005()

[A]×=0.5	$[B] x_1 = 1.406$
[C] ^x ⊨1.5	[D]x1=2

Statement for Linked answer Q61 and Q62 is given below

61) Given a >0, we wish to calculate its reciprocal value \overline{a} by using Newton Raphson method for f(x) = 02 Marks GATE-CE-2005() ATE-CE-2005()

$[\mathbf{A}] X_{K+1} = \frac{1}{2} \left(X_K + \frac{a}{X_K} \right)$	$[\mathbf{B}]^{X_{K+1}} = \left(X_K + \frac{a}{2}X_K^2\right)$
$[\mathbf{C}]X_{K+1} = 2X_K - aX_K^2$	$[D]^{X_{K+1}} = X_K - \frac{a}{2}X_K^2$

62) For a = 7 and starting with xo = 0.2, the first two iterations will

2 Marks GATE-CE-2005()

[A]0.11,0.1299	[B]0.12, 0.1392
[C]0.12, 0.1416	[D]0.13, 0.1428

1 Marks GATE-ME-2013()

1 Marks GATE-ME-2003()

1 Marks GATE-ME-1999()

Key Pape	er								
1.	D	2.	С	3.	D	4.	С	5.	Α
6.	В	7.	С	8.	С	9.	В	10.	С
11.	D	12.	Α	13.	Α	14.	Α	15.	Α
16.	Α	17.	в	18.	В	19.	Α	20.	Α
21.	в	22.	D	23.	В	24.	В	25.	D
26.	D	27.	в	28.	В	29.	D	30.	в
31.	в	32.	С	33.	В	34.	С	35.	D
36.	D	37.	С	38.	Α	39.	С	40.	Α
41.	D	42.	D	43.	в	44.	D	45.	с
46.	Α	47.	С	48.	Α	49.	в	50.	Α
51.	с	52.	D	53.	Α	54.	в	55.	в
56.	D	57.	D	58.	D	59.	D	60.	с
61.	с	62.	в						

Probability & Statistics

1) Let P(E) denote the probability of the event E.Given	P(A)=1 , $P(B)=1/2$, the values of $P(A B)$ and $P(B A)$
respectively are	1 Marks GATE-CSE/IT-2003()
[A]1/4,1/2 [C]1/2,1	[B]1/2,1/4 [D]1,1/2
2) A polynomial $p(r)$ is such that $p(0) = 5$, $p(1) = 4$, $p(2)$	= 9 and P(3) = 20 The minimum degree it can have is
[A] 1 [C] 3	[B] 2 [D] 4
3) Two events A and B with probability 0.5 and 0.7 respe	ctively, have joint probability of 0.4 . The probability
that neither A or B happens is [A]0.2 [C]0.6 4) $\left((PHead) = P(Tail) = \frac{1}{2}\right)$ ar $P(Head) = \frac{1}{4}$ and $P(Tail) = \frac{3}{4}$. One coin is picked at ra	2 Marks DRDO-ECE/TCE-2008() [B]0.4 [D]0.8
There are two fair coins $\frac{2}{3}$ ar	nd a third biased coin where
$P(Head) = \frac{1}{4}$ and $P(Tatt) = \frac{1}{4}$. One coin is picked at rappobability that the coin tossed is one of the fair of	andom and tossed once a Head is obtained . The coins is
$1, \tau \le 1$	2 Marks DRDO-ECE/TCE-2009()
$[\mathbf{A}] R_x(\tau) = \begin{cases} 1, & \tau \le 1\\ 0, & otherwise \end{cases}$	$[\mathbf{B}] R_x(\tau) = \frac{\sin\tau}{2\tau}$ $[\mathbf{D}] R_x(\tau) = \begin{cases} 1 - \tau & \tau \le 1\\ 0, & otherwise \end{cases}$
$[\mathbf{C}]R_x(\tau) = 1 - \sin^2\tau$	$[\mathbf{D}]^{R_x(\tau)} = \begin{cases} 1 & -1 & -1 & -1 \\ 0 & otherwise \end{cases}$
5) A probability density function is given by $p(x) = Ke^{-x^2/2} - \infty < x < \infty$	
The value of K should be	2 Marks GATE-ECE/TCE-1997()
$[A] \frac{1}{\sqrt{2\Pi}} \\ [C] \frac{1}{2\sqrt{\Pi}}$	$[B] \sqrt{\frac{2}{\pi}} $ $[D] \frac{1}{\pi\sqrt{2}}$
$[C]_{2\sqrt{\Pi}} = f(X,Y) = Y^2 Y - 2XY + 2Y + Y$	$[D]_{\pi\sqrt{2}}$
6) The function $f(X,Y) = X^2Y - 3XY + 2Y + X$, has	2 Marks GATE-ECE/TCE-1993()
[A] no local extremum	[B] one local minimum but no local maximum
[C]one local maximum but no local minimum	[D]one local minimum but no local minimum
7) An event has two possible outcomes with probability outcomes per second is:	$P_1 = \overline{2}$ and $P_2 = \overline{64}$ The rate of information with 16
	1 Marks IES-ECE/TCE-2013()
[A] ³⁸ / ₄ bits/sec [C] ³⁸ / ₂ bits/sec	[B] ³⁸ / ₆ bits/sec [D] ³² / ₃₂ bits/sec
8) Two independent random variables X and y are unifor	
that max[X y] is less than $1/2$ is	inity distributed in the interval [1 1]. The probability
[A]3/4	1 Marks GATE-EEE-2012,GATE-ECE/TCE-2012() [B] 9/16
[C]1/4	[D]2/3
9) Two coins are simultaneously tossed. The probabi	1 Marks GATE-CE-2010()
[A]1/8	[B] 1/6
[C]1/4	[D]1/2
10) In an experiment, positive and negative values are eq most one negative value in five trials is	uany intervito occur. The probability of obtaining at
1	2 Marks GATE-CE-2012()
$[A] \frac{1}{32}$	$\begin{bmatrix} B \end{bmatrix} \frac{2}{32} \\ \frac{6}{32} \\ \begin{bmatrix} D \end{bmatrix} \frac{2}{32} \end{bmatrix}$
$[C]_{\overline{32}}$	10132

11) There are two containers, with one containing 4 Red and 3 Green balls and the other containing 3 Blue and 4 Green balls. One ball is drawn at random from each container. The probability that one of the balls is Red and the other is Blue will be

1 Marks GATE-CE-2011()

[A]1/7	[B]9/49
[C]12/49	[D]3/7

12) A classof first year B. Tech. students is composed of four batches A, B, C and D, each consisting of 30 students. It is found that the sessional marks of students in Engineering Drawing in batch C have a mean of 6.6 and standard deviation of 2.3. The mean and standard deviation of the marks for the entire class are 5.5 and 4.2, respectively. It is decided by the course instructor to normalize the marks of the students of all batches to have the same mean and standard deviation as that of the entire class. Due to this, the marks of a stu-dent in batch C are changed from 8.5 to

[A]6.0	[B]7.0
[C]8.0	[D]9.0

13) The standard normal probability function can be approximated as

 $F(x_N) = \frac{1}{1 + exp(-1.7255x_N |x_N|^{0.12})}$

where x_N = standard normal deviate. If mean and standard deviation of annual precipitation are 102 em and 27 em respectively, the probability that the annual precipitation will be between 90 em and 102 em is 2 Marks GATE-CE-2009()

[A]66.7%	[B] 50.0%
[C]33.3%	[D]16.7%

14) If probability density function of a random variable X is

 $f(x) = x^2$ for $-1 \le x \le 1$ and

= 0 for any other value of x Then, the percentage probability $p\left(-\frac{1}{3} \le x \le \frac{1}{3}\right)$ is

[A]0.247	[B]2.47
[C]24.7	[D]247

15) A person on a trip has a choice between private car and public transport. The probability of using a private car is 0.45. While u s.ing the public transport, further choices available are bus and metro, out of which the probability of commuting by a bus is 0.55. In such a situation, the probability (rounded up to two decimals) of using a car, bu s and metro, respectively would be

2 Marks GATE-CE-2008()

2 Marks GATE-CE-2004()

2 Marks GATE-CE-2008()

[A]0.45, 0.30 and 0.25	[B]0.45,0.25 and 0.30
[C]0.45,0.55 and 0.00	[D]0.45, 0.35 and 0.20

16) A hydraulic structure has four gates which operate independently. The probability of failure of each gate is 0.2. Given that gate 1 has failed, the probability that both gates 2 and 3 will fail is

[A]0.240 [B]0.200 [C]0.040 [D]0.008

17) A box contains 10 screws, 3 of which are defective. Two screws are drawn at random with replacement. The probability that none of the two screws is defective will be

The probability that none of	I the two screws is derective will be	
		1 Marks GATE-CE-2003()
[A]100%	[B] 50%	
[C]49%	[D]None of these	
	on a scaffolding will exceed the design load of 3 tonn trength of the scaffolding will be more than 3tonnes i is	s 0.85. The probability
[A]0.2775	[B] 0.1275	2 Marks IES-CE-2002()

[0]0.0225		[D]0.0020
[C]0.0225		[D]0.0020
[A]U.2775		[B] 0.1275

19) The probability that the load on a scaffolding will exceed 2t is 0.15. The probability that the strength of the scaffolding will be more than 2t is 0.8. The probability of failure of the scaffolding will be

 [A] 0.68 [B] 0.17 [C] 0.12 [D] 0.03 20) From the probability equation it is found that the most probable values of a series of errors arising out of observations of equal weightage are those for which the sum of their squares is 2 Marks IES-CE-200 [A] Zero [B] infinity [C] minimum [D] maximum 21) The box 1 contains chips numbered 3, 6, 9, 12 and 15. The box 2 contains chips numbered 6, 11, 16 21 and 26. Two chips , one from each box , are drawn at random. The numbers . The numbers written or these chips are multiplied . The probability for the to be even number is 	, 1 1()		
 20) From the probability equation it is found that the most probable values of a series of errors arising out of observations of equal weightage are those for which the sum of their squares is 2 Marks IES-CE-200 [A] Zero [B] infinity [C] minimum [D] maximum 21) The box 1 contains chips numbered 3, 6, 9, 12 and 15. The box 2 contains chips numbered 6, 11, 16 21 and 26. Two chips , one from each box , are drawn at random. The numbers . The numbers written or these chips are multiplied . The probability for the to be even number is 	, 1 1()		
[A] Zero[B] infinity[C]minimum[D]maximum21) The box 1 contains chips numbered 3, 6, 9, 12 and 15. The box 2 contains chips numbered 6, 11, 1621 and 26. Two chips, one from each box, are drawn at random. The numbers. The numbers written or these chips are multiplied. The probability for the to be even number is	, 1 1()		
21 and 26 . Two chips , one from each box , are drawn at random. The numbers . The numbers written or these chips are multiplied . The probability for the to be even number is	1 1()		
2 Marks GATE-EIN/IN-201			
[A]6/25 [B]2/5 [C]3/5 [D]19/25	3()		
22) A continuous random variable X has a probability density function $f(x) = e^{-x}$, $0 < x \ll$. Then P{X > 1} is 1 Marks GATE-EIN/IN-201:	- ()		
[A]0.368 [B]0.5 [C]0.632 [D]1.0			
23) A fair coin is tossed till a head appears for the first time . The probability that the number of required tosse	S		
is odd , is : 1 Marks GATE-EIN/IN-201	2()		
[A]1/3 [B]1/2 [C]2/3 [D]3/4			
24) Two dices are rolled simultaneously. The probability that the sum of digits on the top surface of the two dices is even is			
2 Marks GATE-EIN/IN-200	6()		
[A]0.5 [B]0.25 [C]0.167 [D]0.125			
25) A random variable X has $\bar{X} = 0$ & $\sigma_x^2 = 1$. Form a new random variable Y = 2x + 1. The values of \bar{Y} & σ_Y^2 are :			
2 Marks ISRO-ECE/TCE-201 [A] 0 & 1 [B] 1 & 2	2()		
[C]1 &4 [D]None of these			
26) Person X can solve 80 % of the ISRO and person Y can solve 60 % . The probability that at least one of them will solve a problem from the question paper , selected at random is :			
2 Marks ISRO-ECE/TCE-201 [A] 0.48 [B] 0.70	2()		
[C]0.88 [D]0.92			
27) A man with n keys wants to open a clock . He tries his keys at random . The expected number of attempts for this success is (keys are replaced after every attempt)			
2 Marks ISRO-ECE/TCE-200 [A] n/2 [B] n	9()		
[C] \sqrt{n} [D]None of the above			
28) A husband and wife appear in an interview for two vacancies for same post. The probability of husband getting selected is 1/5 while the probability of wife getting selected is 1/7. Then the probability that anyone of them getting selected is			
2 Marks ISRO-ECE/TCE-200 [A]11/35 [B]12/35	8()		
[C]1/35 [D]34/35			
29) A bag contains eight white and six red marbles . The probability of drawing two marbles of same colou			
$[A] \frac{8c_2.6c_2}{[B] \frac{8c_2}{2} + \frac{6c_2}{6c_2}}$	7()		
$[A] \frac{8c_2 \cdot 6c_2}{14c_2} \qquad \qquad [B] \frac{8c_2}{14c_2} + \frac{6c_2}{14c_2} \\ [C] \frac{8c_2 \cdot 6c_2}{14c_2 \cdot 14c_2} \qquad \qquad [D] \frac{8c_2}{14c_2} + \frac{6c_2}{12c_2} \\ \end{tabular}$			

Probability & Statistics

30) A box contains 5 black and 5 red balls . Two balls are randomly picked one after another from the box, without replacement . The probability for both balls being red is

without replacement . The probability for both ball	IS DEITIG TEU IS 2 Marks ISRO-ECE/TCE-2006	6()
[A]1/90 [C]19/90	[B] 1/5 [D]2/9	5()
31) If A and B are two events and P(A / B) = 1 then $P(B^c)$		
$[A] P(B^c)$ $[C]0$	$\begin{tabular}{l} & 1 \mbox{ Marks} \\ \end{tabular} \en$	•()
32) The regression equations are $x + 2y = 3$; $2x + 3y =$	4 then E(X) , E(Y) are	
[A]-1,-2 [C]2,1	1 Marks [B] 1, -2 [D]-1, 2	. ()
33) From 6 positive and 8 negative numbers , 4 numbers a multiplied , the probability that the product is a po		
$[A] \frac{\frac{505}{1001}}{1001}$	[B] $\frac{50}{1001}$ 2 Mar	'ks ()
$[C]_{101}^{-1}$	[D]55 / 1001	
34) The probability of error on a single transmission in a d probability of more than three errors in 1000 trans	smissions is	
$[A] 2 \times 10^{-6}$ $[C] 4 \times 10^{-6}$	2 Marks [B] 3×10^{-6} [D] 5×10^{-6}	
35) The regression equations are $2x + 3y = 6$; $4x + 3y = 6$		
[A]1 / 2 [C]-1/2 36)	[B] 2 [D] $^{1/\sqrt{2}}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	· ()
A problem is given to three students A, B and C ; who The probability that the problem will be solved by a	se chances of solving it are $2,\ 3$ and 4 espectively	1.
$[A]\frac{1}{4}$ $[C]\frac{3}{4}$	1 Marks [B] $\frac{2}{3}$ [D] $\frac{4}{5}$	• ()
37) A and B are two independent events with $P(A \cup B) = 0$	0.8 and P(A) = 0.5 then P(B) =	
[A]0.3 [C]0.1	^{1 Marks} [B]0.4 [D]0.6	•()
38) A party of 'n' persons take their seats at random at a ro persons do not sit together is		
$[A] \frac{2}{(n-1)}$ $[C] \frac{(n-2)}{(n-1)}$	$[B]\frac{(n-3)}{(n-1)}$ $[D]\frac{1}{(n-1)}$	'ks ()
39) A manufacturer knows that the condensers he make them in boxes of 100 . What is the probability that a bo condensers ?		
$[A]^{1} - \frac{3}{2}e^{-1}$ $[C]^{1} - \frac{2}{e}$	$[B]1 - \frac{5}{2}e^{-1}$ $[D]1 - \frac{5}{e}$	'ks ()

40) In a series of independent trials with the result of each trial being classified either a success or failure , the probability of a success in a trail is 1/3. The probability that the fifth trail results in the third success is

[A]8/81 [B]4

2 Marks ()

[C]1/27	[D]4/243		
41) A gambler has in his pocket a fair coin and a two headed coin . He selects one of the coins at random and flips it and it shows head. The probability that it is the fair coin is			
[A]1/4 [C]1/3	2 Marks () [B] 3/4 [D]2/3		
42) A man takes a step forward with probability 0.4 and bat the end of 11 steps he is one step away from the s	ckward with probability 0.6. The probability that at		
	2 Marks ()		
$[A] \left(\frac{6}{25}\right)^5$	$[B] 462 \left(\frac{6}{25}\right)^5$ $[D] \left(\frac{1}{25}\right)^5$		
$[\mathbf{C}]538\left(\frac{1}{25}\right)^5$	$\left[D\right]\left(\frac{1}{25}\right)$		
43) Out of 10,000 families with 4 children each the probab daughters is			
[A]1250	2 Marks () [B] 625		
[C]2500	[D]9375		
44) If A and B are mutually exclusive events, then	1 Marks ()		
$[\mathbf{A}] P(A \cup B) = P(A).P(B)$	$[\mathbf{B}] P(A \cap B) = P(A).P(B)$		
$[\mathbf{C}]^{P(A \cup B)} = 0$	$[D]^{P(A\cap B)} = 0$		
45) The variance of the two-point distribution			
X A b			
F(x) P q			
where $p + q = 1$ is	4 Marka ()		
[A] ap + bq	$[B]\sqrt{ap+bq}$		
$[\mathbf{C}]pq(a-b)^2$	[D]2pq		
46) A fair dice is rolled twice. The probability that an odd n	umber will follow an even number is 2 Marks GATE-ECE/TCE-2005()		
[A]1/2	[B] 1/4		
[C]1/6	[D]1/3		
47) A probability density function is of the form			
$p(x)={\it K}e^{-lpha x}$, $x\epsilon(-\infty,\infty)$			
The value of K is			
[A]0.5	2 Marks GATE-ECE/TCE-2006() [B]]		
[C]0.5 α	[D]α		
48) An examination consists of two papers. Paper 1 and Paper 2. The probability of failing in Paper 1 is 0.3 and that in Paper 2 is 0.2. Given that a student has failed in Paper 2, the probability of failing in Paper 1 is 0.6. The probability of a student failing in both the papers is			
[A]0.5	2 Marks GATE-ECE/TCE-2007() [B] 0.18		
[C]0.12	[D]0.06		
49) A fair coin is tossed 10 times. What is the probability t	hat Only the first two tosses will yield heads? 1 Marks GATE-ECE/TCE-2009()		
$[A]\left(\frac{1}{2}\right)^2$	$[B]_{10}C_2\left(\frac{1}{2}\right)^2$		
$\begin{bmatrix} A \end{bmatrix} \left(\frac{1}{2}\right)^2 \\ \begin{bmatrix} C \end{bmatrix} \left(\frac{1}{2}\right)^{10} \end{bmatrix}$	$[\mathbf{B}]^{10}C_{2}\left(\frac{1}{2}\right)^{2}$ $[\mathbf{D}]^{10}C_{2}\left(\frac{1}{2}\right)^{10}$		
(2)	(2)		

Probability & Statistics

50) If P and Q are two random events, then the following	g is TRUE	
[A] Independence of P and Q implies that probability $(P \cap Q) = 0$	[B] Probability (P U Q) ≥ Probabil (Q)	2 Marks GATE-EEE-2005() ity (P) + Probability
[C]If P and Q are mutually exclusive, then they must be independent	$[D] Probability (P \cap Q) \leq Proba$	bility (P)
51) A fair coin is tossed three times in succession. If the f	irst toss produces a head, then the	probability of
getting exactly two heads in three tosses is		2 Marks GATE-EEE-2005()
[A]1/8 [C]3/8	[B] 1/2 [D]3/4	
52) Two fair dice are rolled and the sum r of the number		
[A] $\Pr(r > 6) = \frac{1}{6}$	[B] Pr (r/3 is an integer) = $\frac{5}{6}$	2 Marks GATE-EEE-2006()
[C] Pr (r = 8 r/4 is an integer) = $\frac{5}{9}$	$[D]_{Pr}(r=6 r/5 \text{ is an integer}) = \frac{1}{18}$	
53) X is a uniformly distributed random variable that tak		
		2 Marks GATE-EEE-2008()
[A]0 [C]1/4	[B] 1/8 [D]1/2	
54) Consider an undirected random graph of eight vertic		edge between a
pair of vertices is 1/2. What is the expected numb	er of unordered cycles of length t	hree? 1 Marks GATE-CSE/IT-2013()
[A]1/8	[B] 1	
[C]7 55) A continuous random variable X has a probability der	[D]8	
		. I fiefi P{X > I } IS 1 Marks GATE-EEE-2013()
[A]0.368 [C]0.632	[B]0.5 [D]1.0	
56) The minimum Eigen value of the following matrix		
[3 5 2]		
5 12 7 2 7 5		
[]		1 Marks GATE-ECE/TCE-2013()
[A]0 [C]2	[B] 1 [D] 3	
57) Suppose p is number of cars per minute passing thr	oughacertain road junction betw	
and p has a Poisson distribution with mean 3. What is any given minute in this interval?	the probability of observing fewer	than 3 cars during
		1 Marks GATE-CSE/IT-2013()
[A]8/(2³) [C]17/(2³)	[B] 9/(2³) [D]26/(2³)	
58) Consider a random variable X that takes values + 1 a	/ / /	e values of the
cumulative distribution function $F(x)$ at $x = -1$ an	d +1 are	1 Marks GATE-CSE/IT-2012()
[A] 0 and 0.5	[B]0 and 1	
[C]0.5 and 1	[D]0.25 and 0.75	
59) If the difference between the expectation of the squa expectation of the random variable $(E[X^2])$ is den	oted by Rthen	the square of the
		1 Marks GATE-CSE/IT-2011()
$[\mathbf{A}]\mathbf{R} = 0$	[B]R<0	
$[\mathbf{C}]^R \ge 0$	[D]R>0	

60) If two fair coins are flipped and at least one of the outcomes is known to be a head, what is the probability that both outcomes are heads?

[A]1/3	[B] 1/4
[C]1/2	[D]2/3

61) A fair coin is tossed independently four times. The probability of the event "the number of time heads shown up is more than the number of times tails shown up" is 2 Marks GATE-ECE/TCE-2010()

$[A]\frac{1}{16}$	$[B]\frac{1}{8}$
$[C]_{4}^{\frac{1}{4}}$	$[D]_{16}^{5}$

62) Consider the methods used by processes P1 and P2 for accessing their critical sections whenever needed.as given below. Theinitial values of shared boolean variables S1 and S2 are randomly assigned.

Method used by PI	Method used by P2
while (S1 = = S2) ;	while (S1 != S2) ;
Critica1 Section	Critica1 Section
S1 = S2;	S2 = not (S1);

Which one of the following statements describes the properties achieved?

1 Marks GATE-CSE/IT-2010() [B] Progress but not mutual exclusion

[A] Mutual exclusion but not progress [C] Neither mutual exclusion nor progress

63) Consider a company that assembles computers. The probability of a faulty assembly of any computer is p. The company therefore subjects each computer to a testing process. This testing process gives the correct result for any computer with a probability of q. What is the probability of a computer being declared faulty?

-		2 Marks GATE-CSE/IT-2010()
[A]pq + (1 - p)(1 - q)	[B](1-q)p	
[C](1-p)q	[D]pq	
64) What is the probability that divisor of	$^{10^{99}}$ is a multiple of $^{10^{96}}$?	2 Marks GATE-CSE/IT-2010()
[A]1/625	[B]4/625	

	/	,
	[C]12/625	[D]16/625
ç	5) A fair dice is tossed two times. The pro-	obability that the second toss results in a

65) A fair dice is tossed two times . The probability that the second toss results in a value that is higher than the first toss is 2 Marks GATE-ECE/TCE-2011()

[A]2/36	[B] 2/6
[C]5/12	[D]1/2

66) Two dice are rolled once. The probability that the sum on the dice is neither 9 nor 11 is

		2 Marks ()
[A]5/6	[B] 1/3	
[C]2/3	[D]1/2	
67) Let P(E) denotes the probability or respectively are	f the event E. Given $P(A) = 1$, $P(B) = 1/2$. The values of $P(A/B)$) and $P(B/A)$
respectively are		1 Marks ()
[A]1/4,1/2	[B]1/2,1/4	
[C]1/2,1	[D]1, 1/2	
68) A speaks truth in 75% and in 80% other narrating the same incide	of cases. In what percentage of cases are they likely to cont nt	radict each
		2 Marks ()

[A] 5%	[B] 45%
[C]35%	[D]15%

69) If 3 is the mean &3/2 is the standard deviation of a binomial distribution, then the distribution is

1 Marks GATE-CSE/IT-2011()

[D]Both mutual exclusion and progress

Institute of Engineering Studies (IES,Bangalore) for GATE,IES&PSU Leading Institute in Bangalore for classes and all over India for Online Tests/Practice & Postal Courses

Leading Institute in Bangalore for classes and all over India for Online Tests/Practice & Postal Courses				
Probability & Statistics				
$[A]\left(\frac{3}{4} + \frac{1}{4}\right)^{12}$ $[C]\left(\frac{4}{5} + \frac{1}{5}\right)^{60}$	$[B]\left(\frac{1}{2} + \frac{3}{2}\right)^{12}$ $[D]\left(\frac{1}{5} + \frac{4}{5}\right)^{5}$	2 Marks ()		
70) If a fair coin is tossed four times. What is the probabili	ty that two heads and two tails will result ?			
[A]3/8 [C]5/8	[B] 1/2 [D]3/4	1 Marks ()		
71) \rightarrow The probability that a man who is 'x' years old will d A_{1} , A_{2} , A_{n} each 'x' years old now, the probability that		2 Marks ()		
$[A] 1/n^{2}$ $[C] 1/n^{2} [1 - (1 - P)^{n}]$	$[B]^{1} - (1 - P)^{n}$ $[D]^{1} / n[1 - (1 - P)^{n}]$			
72) A can solve 90% of the problems given in a book an the probability that at least one of them will solve a pr from the book?				
[A]0.16 [C]0.97	[B] 0.63 [D]0.20	1 Marks ()		
73) If the probabilities that A and B will die within a year a then the probability that only one of them will be alive				
[A] pq [C] q(1 –p)	[B] p(1 -q) [D] p+q-2pq	1 Marks ()		
74) How many positive integers less than 100 are divis	sible by either 7 or 11			
[A]2 [C]20	[B]22 [D]23	1 Marks ()		
75) Let a set A has a 4 elements then P(A) denotes the p	powerset of the set A. Now cardinality of P(A) İS 1 Marks ()		
[A]16 [C]256	[B]81 [D]1			
76) Which of the following statements is true in a year	?	1 Marks ()		
[A] Among any group of 366 people there must be at least one with the same birthday	[B] Among any group of 366 people there m least two with the same birthday	ust be at		
[C]Among any group of 366 people there must be at most one with the same birthday	[D]Among any group of 366 people there m most none with the same birthday	ust be at		
What is the probability that a card selected from a d	eck is a king?			
[A]1/4 [C]4/52	[B] 1/52 [D]2/52	1 Marks ()		
78) What is the probability that a positive integer less tha	n 100 selected at random is divisible by 25?			
[A]3 / 100 [C]2 / 100	[B]4 / 100 [D]5 / 100	2 Marks ()		
79) What is the probability that a positive integer selected	at random from the set of positive integers no	ot		
exceeding 21 is divisible by 5 or 3?		1 Marks ()		
[A]11/20 [C]11/21	[B]10/20 [D]10/21			
80) X is uniformly distributed random variable that takes	values between 0 and 1. The value of $E(x^3)$ wil	l be		

77)

			1 Marks ()
[A]1/4 [C]1/8		[B] 0 [D]1/2	
81) In answering a qu answer . Let ' P' be Assume that the s additional probab	estion on multiple choice test , the the probability that student knows tudent guess the answer to a questi ility that the students knows the ans	students either knows the answe s the answer and i – p that of gues on will be correct with a probabilit wer to a question given that he an	sing the answer. 1/5. What is the
$[A] \frac{\frac{4P}{5P+1}}{\frac{5P+1}{4}}$ $[C] \frac{4P}{\frac{4P}{5P+1}}$		$[B] \frac{\frac{5P}{4P \pm 1}}{[D] \frac{5P}{5}}$	
odd is 90% of the p face is the same. I	ce (with 6 faces, numbered from 1 to probability that the face value is eve f the probability that the face is eve tions is closest to the probability t	en. The probability of getting any ngiven that it is greater than 3 is (evennumbered
[A]0.453		[B] 0.468	2 Mars ()
[C]0.485		[D]0.492	
83) If 20 percent man of exactly 2 tech	agers are technocrats, the probabili nocrats is:	ty that a random committee of 5 m	lanagers consists
[A]0.2048		[B] 0.4000	2 Marks GATE-ME-1993()
[C]0.4096		[D]0.9421	
84) The manufactunn	g area of a plat is divided into four q The total number of possible layo	uadrants. Four machines have to	be located, one in
			1 Marks GATE-ME-1995()
[A]4 [C]16		[B] 8 [D]24	
85) Abox contains 5 h	plack balls and Bred balls. A total of eplacing them back. The probability	three balls are picked from the be	e red ball is
[A]3/8 [C]15/28		[B] 2/15 [D]1/2	2 Marks GATE-ME-1997()
	a defective piece being produced in ve pieces, only one is defective is		The probability that
[A] (0.99) ⁴ (0.01)		[B] (0.99)(0.01) ⁴	2 Marks GATE-ME-1996()
$[C]^{5 \times (0.99)(0.01)^{4}}$		$[D]^{5 \times (0.99)^{4}(0.01)}$	
87) The probability th	attwofriends share the same birth-r	monthis	
[A]1/6 [C]1/144		[B] 1/12 [D]1/24	1 Marks GATE-ME-1998()
88) The probability th	at a student knows the correct answ answer, then the student guesses	ver to a multiple choice question is	
	Given that the student has answered knows the correct answer is	the question correctly, the condi	tional probability
2		3 [R] =	2 Marks GATE-ME-2013()
		[B] $\frac{3}{4}$ [D] $_{9}$	
89) In a manufacturin	g plant, the probability of making a c ctive bolts in a total of 900 bolts a	defective bolt is 0.1. The mean and	
[A] 90 and 9		[B]9 and 90	2 Marks GATE-ME-2000()
[C]81 and 9		[D]9 and 81	

90) Suppose X is a normal random variable with mean 0 and variance 4. Then the mean of the absolute value of X is

of X is	2 Marka CATE	ME-1999,GATE-ME-1999()
$[A] \frac{1}{\sqrt{2}\pi}$ $[C] \frac{2\sqrt{2}}{\sqrt{\pi}}$	$[B] \frac{2\sqrt{2}}{\sqrt{\pi}}$ $[D] \frac{2}{\sqrt{\pi}}$	VIE-1999,GATE-WE-1999()
	·	
91) Two dice are thrown. What is the probability that the		eight? Marks GATE-ME-2002()
[A]5/36 [C]1/4	[B] 5/18 [D]1/3	
92) Manish has to travel from A to D changing buses at st either stop can be 8 minutes each, but any time of wa He can afford up to 13 minutes of total waiting time, that Manish will arrive late at D?	iting up to 8 minutes is equally likely a	t both places.
[A]8/13	[B] 13/64	2 Marks GATE-ME-2002()
[C]119/128	[D]9/128	
93) Arrivals at a telephone booth are considered to be Po successive arrivals. The length of a phone call is dist probability that an arrival does not have to wait be	isson, with an average time of 10 min ributed exponentially with mean 3 m efore service is	
[A]0.3	[B]0.5	
[C]0.7	[D]0.9	
94) An unbiased coin is tossed three times. The probab		y two cases is 2 Marks GATE-ME-2001()
[A]1/9	[B] 1 / 8	
[C]2/3	[D]3/8	
95) The area enclosed between the parabola $y = x^2$ and t		Marks GATE-ME-2003()
[A]1/8	[B] 1/6	
[C]1/3	[D]1/2	
96) A box contains 5 black and 5 red balls. Two balls are.r without replacement. The probability for both bal	ls being red is	m the box, 2 Marks GATE-ME-2003()
[A]1/90	[B] 1/5	2 Marks GATE-ME-2003()
[C]19/90	[D]2/9	
97) A flexible rotor-shaft system comprises of a 10 kg rot diameter 30 mm and length 500 mm between bearing mass of the shaft is included in the rotor mass) mou simulate simply supported boundary conditions. the x ^{10¹¹} Pa. What is the critical speed of rotation of th	gs (shaft is being taken mass-less as t inted at the ends. The bearings are as shaft is made of steel fo; which the va	he equivalent ssumed to
	2	Marks GATE-ME-2003()
[A]60 Hz [C]135 Hz	[B] 90 Hz [D]180 Hz	
98)The parabolic are $y = \sqrt{x}$, 1 ≤ 2 is revolved around t	he x-axis. The volume of the solid of	revolution is Marks GATE-ME-2010()
[A] <i>†</i> 4	[B] 7/ 2	
[C]3 <i>π</i> /4	[D]3 <i>π</i> /2	
99) 25 persons are in a room. 15 of them play hockey, 17 hockey and football. Then the number of persons p	laying neither hockey nor football is	
[A]2	[B] 1 7	- Marts GATE-WE-2010()
[C]13	[D]3	

100) Given digits 2, 2, 3, 3, 3, 4, 4, 4, 4 how many distinct 4 digit numbers greater than 3000 can be formed?

$ \begin{bmatrix} A 50 \\ C 52 \\ D 54 \\ \end{bmatrix} $			2 Marks GATE-ME-2010()
[A] 1/6 [B] 1/4 [C] 1/3 [D] 1/2 102) A box contains 4 red balls and 6 black balls. Three balls are selected randomly from the box one after another, without replacement. The probability that the selected set contains one red ball and two black balls is 2 Muris GATE ME 2012[] [A] 1/20 [A] 1/20 [B] 1/12 [C] 3/10 [D] 1/2 103) If three coins are tossed simultaneously, the probability of getting at least one head ************************************			
[A]1/6 [B]1/4 [C]1/3 [D]1/2 102) A box contains 4 red balls and 6 black balls. Three balls are selected randomly from the box one after another, without replacement. The probability that the selected set contains one red ball and two black balls is 102) A box contains 4 red balls and 6 black balls. Three balls are selected randomly from the box one after another, without replacement. The probability that the selected set contains one red ball and two black balls is 2 More GATE ME 2012 () [A]1/20 [A]1/20 [B]1/12 [C]3/10 [D]1/2 103) If three coins are tossed simultaneously, the probability of getting at least one head 1 More GATE ME 2012 () [A]1/8 [B] 3/8 [C]1/2 [D]7/8 104) An unbiased coin is tossed five times. The outcome of each toss is either a head or a tail. The probability of getting at least one head is 2 More GATE ME 2014 () [A]1/32 [B] 13/32 [C]16/32 [D]1/221 105) From a pack of regular playing cards, two cards are drawn at random. What is the probability that both cards will be Kings, if the first card is NOT replaced? 2 More GATE ME 2004 () [A]1/26 [B] 1/52 [C]1/16/9 [D]1/221 106) A lot has 10% defective items are defective is 1 More GATE ME 2004 () 1 More GATE ME 2004 () [A]1/26 [B] 0.1937<	101) The area enclosed between the straight line y = 3	x and the parabola $y = x^2$ in the x-y p	
another, without replacement. The probability that the selected set contains one red ball and two black balls is 2000 (1) [2] [C] [2] 100 [D] 1/2 [C] 310 [D] 1/2 [C] 310 [D] 1/2 [C] 310 [D] 1/2 [C] 310 [D] 7/8 [C] 1/2 [D] 7/8 [C] 1/2 [D] 7/8 [C] 1/2 [D] 7/8 [C] 1/2 [D] 7/8 [C] 1/32 [B] 13/32 [C] 16/32 [D] 31/32 [C] 1/26 [B] 1/52 [C] 1/169 [D] 1/22 1 [D] 1/22 1 [D] 1/20 [D] 1/22 1 [D] 1/20 [D] 1/22 1 [D] 1/20 [D] 1/22 1 [D] 1/25 [D] 1/25 [C] 1/4 [D] 3/4 [D] 1/25 [D] 1/25 [C] 1/4 [D] 3/4 [D] 1/25 [D] 1/25 [D] 1/25 [D] 1/25 [D] 1/25 [D] 1/25 [D] 1/25 [D] 1/25			1 marks GA1E-mE-2012()
$ \begin{bmatrix} [A] 1/20 & [B] 1/12 \\ [C] 3/10 & [D] 1/2 \\ \end{bmatrix} \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	another, without replacement. The probability th		
$ \begin{bmatrix} [C] 3/10 & [D] 1/2 \\ 103) f three coins are tossed simultaneously, the probability of getting at least one head 1 [Marks GATE-ME-2009()] [A] 1/8 [B] 3/8 [C] 1/2 [D] 7/8 \\ 104) An unbiased coin is tossed five times. The outcome of each toss is either a head or a tail. The probability of getting at least one head is 2 [C] 16/32 [D] 31/32 \\ [C] 1/169 [D] 1/221 \\ [O] 1/169 [D] 1/221 \\ [O] 1/169 [D] 1/221 \\ [O] 1/06 A lot has 10% defective items. Ten items are chosen randomly from this lot. The probability that exactly 2 of the chosen items are defective is 1 [Marks GATE-ME-2004()] [A] 1/26 [B] 0.1937 \\ [C] [C] 2/234 [D] 0.3874 \\ [C] 1/223 [D] 1/25 \\ [C] 20/99 [D] 1/25 \\ [C] 20/99 [D] 1/25 \\ [C] 20/99 [D] 1/9/495 \\ [O] 3/4 \\ [O] 3/4 \\ [O] Shing ledie is thrown twice. What is the probability that the sum is neither 8 nor 9? [A] 1/3 [B] 1/25 \\ [C] 20/99 [D] 19/495 \\ [O] 108 A single die is thrown twice. What is the probability that the sum is neither 8 nor 9? [A] 1/3 [B] 1/25 \\ [C] 20/99 [D] 19/495 \\ [O] 109 Consider a continuous random variable with probability density function f(t) = 1 + t for s] 1 0 The standard deviation of the random variable with probability density function f(t) = 1 + t for s] 1 0 The standard deviation of the random variable with probability density function f(t) = 1 + t for s] 1 0 The standard deviation of the random variable with probability density function f(t) = 1 + t for s] 1 0 The standard deviation of the random variable with probability of getting heads exactly 3 times? [Marks GATE-ME-2006()] 100 Acoin is tossed 4 times. What is the probability of getting heads exactly 3 times? [A] \frac{1}{4} [B] \frac{3}{8} [Marks GATE-ME-2006()] 100 Consider a continuous random variable with probability function f(t) = 1 + t for s] 1 0 The standard deviation of the random variable with probability density function f(t) = 1 + t for s] 1 0 The standard deviation of the random variable with probability densi$	[4]1/20	[R] 1 / 1 2	2 Marks GATE-ME-2012()
$ \begin{bmatrix} A 1/8 & B 3/8 \\ C 1/2 & D 7/8 \end{bmatrix} $ 104) An unbiased coin is tossed five times. The outcome of each toss is either a head or a tail. The probability of getting at least one head is 2 Morks GATE-ME-201() $ \begin{bmatrix} A 1/32 & B 13/32 \\ C 16/32 & D 31/32 \end{bmatrix} $ 105) From a pack of regular playing cards, two cards are drawn at random. What is the probability that both cards will be Kings, if the first card is NOT replaced? 2 Morks GATE-ME-2004() $ \begin{bmatrix} A 1/26 & B 1/52 \\ C 1/169 & D 1/221 \end{bmatrix} $ 106) A lot has 10% defective items. Ten items are chosen randomly from this lot. The probability that exactly 2 of the chosen items are defective is 1 Marks GATE-ME-2004() $ \begin{bmatrix} A 0.0036 & B 0.1937 \\ C 0.2234 & D 0.3874 \end{bmatrix} $ 107) A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective? 1 Marks GATE-ME-2004() $ \begin{bmatrix} A 1/5 & B 1/25 \\ C 20/99 & D 19/495 \end{bmatrix} $ 108) A single die is thrown twice. What is the probability that the sum is neither 8 nor 9? 2 Morks GATE-ME-2004() $ \begin{bmatrix} A 1/5 & B 1/25 \\ C 1/4 & D 3/4 \end{bmatrix} $ 109) Consider a continuous random variable with probability during in the first $CATE-ME-2004()$ 1 $ \begin{bmatrix} A 1/3 & B 5/36 \\ C 1/4 & D 3/4 \end{bmatrix} $ 109) Consider a continuous random variable with probability during in the GATE-ME-2004() 1 $ \begin{bmatrix} A \frac{1}{\sqrt{3}} & B \frac{1}{\sqrt{6}} \\ C \frac{1}{\sqrt{3}} & B \frac{1}{\sqrt{6}} \end{bmatrix} $ $ \begin{bmatrix} A \frac{1}{\sqrt{3}} & B \frac{1}{\sqrt{6}} \\ C \frac{1}{\sqrt{6}} & D \frac{1}{\sqrt{6}} \end{bmatrix} $ $ \begin{bmatrix} A \frac{1}{\sqrt{3}} & B \frac{1}{\sqrt{6}} \\ C \frac{1}{\sqrt{6}} & D \frac{1}{\sqrt{6}} \end{bmatrix} $ $ \begin{bmatrix} A \frac{1}{\sqrt{3}} & B \frac{1}{\sqrt{6}} \\ C \frac{1}{\sqrt{6}} & D \frac{1}{\sqrt{6}} \end{bmatrix} \end{bmatrix} $			
$ \begin{bmatrix} [A] 1/8 \\ [C] 1/2 \\ [D] 7/8 \end{bmatrix} $ 104) An unbiased coin is tossed five times. The outcome of each toss is either a head or a tail. The probability of getting at least one head is 2 Marks GATE-ME-201() [A] 1/32 [D] 1/32 [D] 3/32 105) From a pack of regular playing cards, two cards are drawn at random. What is the probability that both cards will be Kings, if the first card is NOT replaced? 2 Marks GATE-ME-200() [A] 1/26 [B] 1/52 [D] 1/221 106) A lot has 10% defective items. Ten items are chosen randomly from this lot. The probability that exactly 2 of the chosen items are defective is [A] 0.0036 [B] 0.1937 [C] 0.2234 [D] 0.3874 107) A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective? [A] 1/5 [B] 1/25 [C] 20/99 [D] 19/495 108) A single die is thrown twice. What is the probability that the sum is neither 8 nor 9? [A] 1/9 [B] 5/36 [C] 1/4 [D] 3/4 109) Consider a continuous random variable with probability dust function f(t) = 1 + t for $\pm 1 = 0$ The standard deviation of the random variable is [A] $\frac{1}{\sqrt{3}}$ [B] $\frac{1}{\sqrt{6}}$ [D] $\frac{1}{\sqrt{6}}$ [C] 1/0 A coin is tossed 4 times. What is the probability of getting heads exactly 3 times? [A] $\frac{1}{4}$ [B] $\frac{3}{3}$ 1 Marks GATE-ME-2000()	103) If three coins are tossed simultaneously, the prob	ability of getting at least one head	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	[A]1/8	[B] 3/8	1 Marks GATE-ME-2009()
probability of getting at least one head is [A]1/32 [B] 13/32 [D]31/32 [D]337	[C]1/2	[D]7/8	
[A] 1/32 [B] 13/32 [D] 31/32 [D] 3		come of each toss is either a head or	a tail. The
$ \begin{bmatrix} C \\ 16/32 \\ D \\ 31/32 \end{bmatrix} $ 105) From a pack of regular playing cards, two cards are drawn at random. What is the probability that both cards will be Kings, if the first card is NOT replaced ? $ = 2 \text{Marks GATE-ME-2004()} $ $ \begin{bmatrix} A \\ 1/26 \\ C \\ C \\ 1/169 \end{bmatrix} \begin{bmatrix} B \\ 1/52 \\ C \\ C \\ 1/169 \end{bmatrix} \begin{bmatrix} D \\ 1/221 \end{bmatrix} $ 106) A lot has 10% defective items. Ten items are chosen randomly from this lot. The probability that exactly 2 of the chosen items are defective is = 1 Marks GATE-ME-2005() \\ \begin{bmatrix} A \\ 0.0036 \\ C \\ C \\ 0.2234 \end{bmatrix} = 1 \text{Marks GATE-ME-2005()} $ \begin{bmatrix} A \\ 0.0366 \\ C \\ C \\ 0.2234 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ C \\ 0.2234 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ C \\ 0.2234 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ C \\ 0.2234 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ C \\ 0.2234 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ C \\ 0.2234 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \begin{bmatrix} A \\ 0.0366 \\ C \\ 0 \\ 0 \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} \\ \end{bmatrix} = 2 \text{Marks GATE-ME-2005()} $			2 Marks GATE-ME-2011()
$ \begin{array}{c} 105) \ From a pack of regular playing cards, two cards are drawn at random. What is the probability that both cards will be Kings, if the first card is NOT replaced ? $			
cards will be Kings, if the first card is NOT replaced ? [A] 1/26 [B] 1/52 [C] 1/169 [D] 1/221 106) A lot has 10% defective items. Ten items are chosen randomly from this lot. The probability that exactly 2 of the chosen items are defective is [A] 0.0036 [B] 0.1937 [C] 0.2234 [D] 0.3874 107) A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective? [A] 1/5 [B] 1/25 [C] 20/99 [D] 19/495 108) A single die is thrown twice. What is the probability that the sum is neither 8 nor 9? [A] 1/9 [B] 5/36 [C] 1/4 [D] 3/4 109) Consider a continuous random variable with probability density function f(t) = 1 +t for ≤1 ± 0 The standard deviation of the random variable is [A] $\frac{1}{\sqrt{3}}$ [B] $\frac{1}{\sqrt{6}}$ [C] $\frac{1}{3}$ [D] $\frac{1}{\sqrt{6}}$ [A] 1/0 Accini is tossed 4 times. What is the probability of getting heads exactly 3 times? [A] $\frac{1}{4}$ [B] $\frac{3}{3}$ 100 replacement with a first carte is a continuous of the random variable is for the random variable is for the random variable is [B] $\frac{3}{3}$ 100 Accini to the second 4 times. What is the probability of getting heads exactly 3 times? [A] $\frac{1}{4}$ [B] $\frac{3}{3}$	/		ability that both
$ \begin{bmatrix} [A] 1/26 \\ [C] 1/169 \\ [D] 1/221 \end{bmatrix} $ 106) A lot has 10% defective items. Ten items are chosen randomly from this lot. The probability that exactly 2 of the chosen items are defective is 1 Marks GATE-ME-2005() $ \begin{bmatrix} [A] 0.0036 \\ [B] 0.1937 \\ [C] 0.2234 \\ [D] 0.3874 \end{bmatrix} $ 107) A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective? $ \begin{bmatrix} [A] 1/5 \\ [C] 20/99 \\ [D] 19/495 \end{bmatrix} $ 108) A single die is thrown twice. What is the probability that the sum is neither 8 nor 9? $ \begin{bmatrix} [A] 1/9 \\ [C] 1/4 \\ [D] 3/4 \end{bmatrix} \begin{bmatrix} [B] 5/36 \\ [C] 1/4 \\ [D] 3/4 \end{bmatrix} $ 109) Consider a continuous random variable with probability density function f(t) = 1 + t for \$1 \color 0 \\ The standard deviation of the random variable is \\ \begin{bmatrix} [A] \frac{1}{\sqrt{3}} \\ [C] \frac{1}{3} \end{bmatrix} \begin{bmatrix} [B] \frac{1}{\sqrt{6}} \\ [D] \frac{1}{\sqrt{6}} \end{bmatrix} 110) A coin is tossed 4 times. What is the probability of getting heads exactly 3 times? $ \begin{bmatrix} [A] \frac{1}{4} \\ [B] \frac{1}{4} \end{bmatrix} $			
106) A lot has 10% defective items. Ten items are chosen randomly from this lot. The probability that exactly 2 of the chosen items are defective is106) A lot has 10% defective items are defective is1 Marks GATE-ME-2005()[A] 0.0036[B] 0.1937[C] 0.2234[D] 0.3874107) A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective ?[A] 1/5[B] 1/25[C] 20/99[D] 19/495108) A single die is thrown twice. What is the probability that the sum is neither 8 nor 9?[A] 1/9[B] 5/36[C] 1/4[D] 3/4109) Consider a continuous random variable with probability density function f(t)=1+t for≤1 ± 0[A] $\frac{1}{\sqrt{3}}$ [B] $\frac{1}{\sqrt{6}}$ [A] $\frac{1}{\sqrt{3}}$ [B] $\frac{1}{\sqrt{6}}$ [C] $\frac{1}{3}$ [D] $\frac{1}{6}$ 110) A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?[A] $\frac{1}{4}$ [B] $\frac{3}{3}$	[A]1/26	[B]1/52	2 Marks GATE-ME-2004()
of the chosen items are defective is $[A] 0.0036 \qquad [B] 0.1937 \\ [C] 0.2234 \qquad [D] 0.3874 \\ [D] 0.486 GATE-ME-2006 \\ [D] 0.495 \\ [D] 0.486 GATE-ME-2005 \\ [D] 0.495 \\ [D] 0.486 GATE-ME-2005 $	[C]1/169	[D]1/221	
$\left[A \right] 0.0036 \\ [B \ 0.1937 \\ [C \] 0.2234 \\ [D \] 0.3874 \\ 107) A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective? \left[A \right] 1/5 \\ [C \] 20/99 \\ 108) A single die is thrown twice. What is the probability the sum is neither 8 non 9? \\ [A \] 1/9 \\ [C \] 1/4 \\ [D \] 3/4 \\ 109) Consider a continuous random variable with probability density function f(t) = 1 + t for $l $t 0 The standard deviation of the random variable is is function f(t) = 1 + t for $l $t 0 The standard deviation of the random variable is [D \] \frac{1}{\sqrt{6}} \left[D \] \frac{1}{\sqrt{6}} \right] \left[D \] \frac{1}{\sqrt{6}} \left[D \] \frac{1}{\sqrt{6}} \right] \left[D \] \frac{1}{\sqrt{6}} \left[D \] \frac{1}{\sqrt{6}} \right] \left[D \] \frac{1}{\sqrt{6}} \left[D \] \frac{1}{\sqrt{6}} \right] \left[D \] \frac{1}{\sqrt{6}} \left[D \] \frac{1}{\sqrt{6}} \right] \left[D \] \frac{1}{\sqrt{6}} \left[D \]$		en randomly from this lot. The probal	oility that exactly 2
$\begin{bmatrix} C \end{bmatrix} 0.2234 \\ \begin{bmatrix} D \end{bmatrix} 0.3874 \\ \end{bmatrix} \begin{bmatrix} D \end{bmatrix} 1.25 \\ \hline D \end{bmatrix} \begin{bmatrix} D \end{bmatrix}$			1 Marks GATE-ME-2005()
107) A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective?107) A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective?1107) A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective?1107) A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective?110) A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?101) A_{1} 102) A_{1} 103) A_{2} 104) A_{1} 105) A_{2} 106) A_{2} 107) A_{3} 108) A_{3} 109) A_{3} 109) A_{3} 109) A_{3} 109) A_{3} 109) A_{3} 100) A_{4} 100) A_{4} 100) A_{4} 101) A_{4} 102) A_{4} 103) A_{4} 103) A_{4} 104) A_{4} 105) A_{4} 106) A_{4} 107) A_{4} 108) A_{4} 109) A_{4} 109) A_{4} 109) A_{4} 100) A_{4} 100) A_{4} 101) A_{4} 102) A_{4} 103) A_{4} 103) A_{4} 104) A_{4} 105) A_{4} 106) A_{4} <td></td> <td></td> <td></td>			
$ \begin{bmatrix} A \end{bmatrix} 1/5 & [B] 1/25 \\ [C] 20/99 & [D] 19/495 \end{bmatrix} $ $ 108) A single die is thrown twice. What is the probability that the sum is neither 8 nor 9? \begin{bmatrix} A \end{bmatrix} 1/9 & [B] 5/36 \\ [C] 1/4 & [D] 3/4 \end{bmatrix} 109) Consider a continuous random variable with probability density function f(t) = 1 + t for \leq 1 \leq 0 \\ The standard deviation of the random variable is \\ \begin{bmatrix} A \end{bmatrix} \frac{1}{\sqrt{3}} & [B] \frac{1}{\sqrt{6}} \\ [C] \frac{1}{3} & [D] \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \frac{1}{\sqrt{6}} \\ [C] \frac{1}{3} & [D] \frac{1}{6} \end{bmatrix} 110) A coin is tossed 4 times. What is the probability of getting heads exactly 3 times? \\ \begin{bmatrix} A \end{bmatrix} \frac{1}{4} \end{bmatrix} \begin{bmatrix} B \end{bmatrix} \frac{3}{8} \end{bmatrix} $	107) A box contains 20 defective items and 80 non-de	fective items. If two items are selected	
$\begin{bmatrix} C \end{bmatrix} 20/99 & [D] 19/495 \\ 108) A single die is thrown twice. What is the probability that the sum is neither 8 nor 9? \\ \begin{bmatrix} A \end{bmatrix} 1/9 & [B] 5/36 \\ \begin{bmatrix} C \end{bmatrix} 1/4 & [D] 3/4 \\ 109) Consider a continuous random variable with probability density function f(t) = 1 + t for \leq 1 \leq t 0 \\ The standard deviation of the random variable is \\ \begin{bmatrix} A \end{bmatrix} \frac{1}{\sqrt{3}} & \begin{bmatrix} B \end{bmatrix} \frac{1}{\sqrt{6}} \\ \begin{bmatrix} C \end{bmatrix} \frac{1}{\sqrt{6}} & \begin{bmatrix} B \end{bmatrix} \frac{1}{\sqrt{6}} \\ \begin{bmatrix} C \end{bmatrix} \frac{1}{\sqrt{3}} & \begin{bmatrix} B \end{bmatrix} \frac{1}{\sqrt{6}} \\ \begin{bmatrix} C \end{bmatrix} \frac{1}{\sqrt{3}} & \begin{bmatrix} B \end{bmatrix} \frac{1}{\sqrt{6}} \\ \begin{bmatrix} D \end{bmatrix} \frac{1}{\sqrt{6}} & \begin{bmatrix} D \end{bmatrix} \frac{1}{\sqrt{6}} \\ \end{bmatrix} 110) A coin is tossed 4 times. What is the probability of getting heads exactly 3 times? \\ \begin{bmatrix} A \end{bmatrix} \frac{1}{4} & \begin{bmatrix} B \end{bmatrix} \frac{3}{8} \end{bmatrix}$	[A]1/5	[B] 1/25	1 Marks GATE-ME-2006()
$[A] \frac{1}{9} \qquad [B] \frac{5}{36} \\ [C] \frac{1}{4} \qquad [D] \frac{3}{4} \\ 109) \text{ Consider a continuous random variable with probability density function} \\ f(t) = 1 + t \text{ for } \leq 1 \leq 0 \\ \text{ The standard deviation of the random variable is} \\ [A] \frac{1}{\sqrt{3}} \qquad [B] \frac{1}{\sqrt{6}} \\ [C] \frac{1}{3} \qquad [D] \frac{1}{6} \\ 110) \text{ A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?} \\ [A] \frac{1}{\frac{1}{4}} \qquad [B] \frac{3}{8} \\ 1 \text{ Marks GATE-ME-2006()} \\ 1 \text{ Marks GATE-ME-2006()} \\ 1 \text{ Marks GATE-ME-2008()} \\ 1 M$			
$[A] 1/9 \qquad [B] 5/36 [C] 1/4 \qquad [D] 3/4 109) Consider a continuous random variable with probability density function f(t) = 1 + t for \leq 1 \leq t 0 The standard deviation of the random variable is [A] \frac{1}{\sqrt{3}} \qquad [B] \frac{1}{\sqrt{6}} \\ [C] \frac{1}{3} \qquad [D] \frac{1}{6} \\ 110) A coin is tossed 4 times. What is the probability of getting heads exactly 3 times? [A] \frac{1}{\frac{1}{4}} \qquad [B] \frac{3}{8} \\ $	108) A single die is thrown twice. What is the probabil	ity that the sum is neither 8 nor 9?	2 Marks GATE-ME-2005()
109) Consider a continuous random variable with probability density function $f(t)=1+t$ for $\leq 1 \leq t$ 0 The standard deviation of the random variable is $[A] \frac{1}{\sqrt{3}}$ $[C] \frac{1}{3}$ 110) A coin is tossed 4 times. What is the probability of getting heads exactly 3 times? $[A] \frac{1}{\frac{1}{4}}$ $[B] \frac{3}{\frac{3}{3}}$ $[B] \frac{3}{\frac{3}{3}}$	[A]1/9	[B] 5/36	
$f(t) = 1 + t \text{ for } \leq 1 \leq 0$ The standard deviation of the random variable is $[A] \frac{1}{\sqrt{3}}$ $[C] \frac{1}{3}$ $[C] \frac{1}{3}$ $[D] \frac{1}{\sqrt{6}}$ $[D] \frac{1}{6}$ $I10) \text{ A coin is tossed 4 times. What is the probability of getting heads exactly 3 times? [A] \frac{1}{4} [B] \frac{3}{8} I \text{ Marks GATE-ME-2008()}$	[C]1/4	[D]3/4	
$\begin{bmatrix} A \end{bmatrix} \frac{1}{\sqrt{3}} \\ \begin{bmatrix} C \end{bmatrix} \frac{1}{3} \end{bmatrix} \begin{bmatrix} B \end{bmatrix} \frac{1}{\sqrt{6}} \\ \begin{bmatrix} D \end{bmatrix} \frac{1}{6} \end{bmatrix} \begin{bmatrix} D \end{bmatrix} \frac{1}{\sqrt{6}} \\ \begin{bmatrix} D \end{bmatrix} \frac{1}{6} \end{bmatrix}$ 110) A coin is tossed 4 times. What is the probability of getting heads exactly 3 times? $\begin{bmatrix} A \end{bmatrix} \frac{1}{4} \end{bmatrix} \begin{bmatrix} B \end{bmatrix} \frac{3}{8} \end{bmatrix}$	f(t)=1+t for≦1≦t 0		
$[C]_{3}^{\frac{1}{3}} \qquad [D]_{6}^{\frac{1}{6}}$ 110) A coin is tossed 4 times. What is the probability of getting heads exactly 3 times? $[A]_{\frac{1}{4}}^{\frac{1}{4}} \qquad [B]_{\frac{3}{8}}^{\frac{3}{8}}$	1	1	2 Marks GATE-ME-2006()
110) A coin is tossed 4 times. What is the probability of getting heads exactly 3 times? $[A]_{\frac{1}{4}}^{\frac{1}{4}}$ $[B]_{\frac{3}{3}}^{\frac{3}{3}}$ 1 Marks GATE-ME-2008()	ĺ	[D] <u>/</u> 6 [D]	
$[A]\frac{1}{4} \qquad [B]\frac{3}{8}$	Ť	Ŧ	
$\begin{bmatrix} A \end{bmatrix}_{\frac{1}{2}} \\ \begin{bmatrix} C \end{bmatrix}_{\frac{1}{2}} \\ \begin{bmatrix} D \end{bmatrix}_{\frac{1}{4}} \\ \end{bmatrix} \\ \begin{bmatrix} D \end{bmatrix}_{\frac{1}{4}} \\ \begin{bmatrix} D \end{bmatrix}_{\frac{1}{4}} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} D \end{bmatrix}_{\frac{1}{4}} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} D \end{bmatrix}_{\frac{1}{4}} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} D \end{bmatrix}_{\frac{1}{4}} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} D \end{bmatrix}_{\frac{1}{4} \\ \end{bmatrix} \\$	1		1 Marks GATE-ME-2008()
	1	[B] ⁸ / ₈	
111) Let X and Y be two independent random variables. Which one of the relations between expectation (E).	_		

111) Let X and Y be two independent random variables. Which one of the relations between expectation (E), variance (Var) and covariance (Cov) given below is FALSE ?

2 Marks GATE-ME-2007() [A] E(XY) = E(X)E(Y)[B] Cov (X,Y) = 0 $[D]E(X^2Y^2) = (E(X))^2(E(Y))^2$ [C]Var(X+Y) = Var(X) + Var(Y)112) Arrivals at a telephone booth are considered be Poisson with an average time of 10 minutes between one arrival and the next. The length of a phone call is assumed to be distributed exponentially with a mean of 3 minutes. The probability that a person arriving at the booth will have to wait, is 2 Marks IES-ME-2000() [A]0.043 [B]0.300 [D10.700 [C]0.429 Statement for Linked answer Q113 and Q114 is given below 113) If A is a 3 x 3 matrix with entries from the set $\{-1, 0, 1\}$ Then the total number of different matrices of order'3', which are neither symmetric nor skew-symmetric is 2 Marks () $[B] (3^3 - 1)(3^6 - 1)$ $[A](3^3+1)(3^6+1)$ $[C]3^9 - 3^6 - 3^3 - 1$ $[D]3^9 - 3^6 + 3^3 - 1$ 114) The probability that 'A' is neither symmetric nor skew symmetric is 2 Marks () [B] $(1 + 3^{-6})(1 - 3^{-3})$ $[A](1 - 3^{-6})(1 - 3^{-3})$ $D(1+3^{-6})(1+3^{-3})$ $[C](1-3^{-6})(1+3^{-3})$ Statement for Linked answer Q115 and Q116 is given below 115) Consider the experiment of tossing a pair of unbiased dice The probability that the sum of the two numbers is a prime number is 2 Marks () [A]7/9 [B] 5/12 [C]4/9 [D]7/12 116) If the experiment is repeated 180 times then how many times we can expect the sum to be a prime number 2 Marks () [A]140 [B]105 [C]80 [D]75 Statement for Linked answer Q117 and Q118 is given below 117) The probability of a man hitting a target is 1/4. If he fires 4 times, then the probability of his hitting the target at least twice is 2 Marks () [A]189/256 [B]196/256 [C]67/256 [D]64/256 118) The least number of times he must fire so that the probability of his hitting the target at least once is greater than 2/3 is 2 Marks () [A]3 [B]4 [C]5 [D]6

<u>a otatistics</u>

Probability & Statistics

Key Paper									
1.	D	2.	В	3.	Α	4.	D	5.	Α
6.	Α	7.	Α	8.	В	9.	С	10.	D
11.	с	12.	D	13.	В	14.	В	15.	С
16.	с	17.	D	18.	с	19.	D	20.	С
21.	D	22.	Α	23.	с	24.	Α	25.	с
26.	D	27.	в	28.	Α	29.	в	30.	D
31.	D	32.	D	33.	Α	34.	с	35.	D
36.	с	37.	D	38.	в	39.	в	40.	в
41.	с	42.	в	43.	с	44.	D	45.	С
46.	в	47.	с	48.	с	49.	с	50.	D
51.	в	52.	С	53.	с	54.	С	55.	Α
56.	Α	57.	с	58.	с	59.	с	60.	Α
61.	D	62.	Α	63.	Α	64.	D	65.	С
66.	Α	67.	D	68.	с	69.	Α	70.	Α
71.	D	72.	с	73.	D	74.	Α	75.	Α
76.	в	77.	С	78.	Α	79.	D	80.	Α
81.	в	82.	в	83.	Α	84.	D	85.	С
86.	D	87.	в	88.	D	89.	Α	90.	С
91.	Α	92.	Α	93.	Α	94.	D	95.	с
96.	D	97.	в	98.	D	99.	D	100.	в
101.	Α	102.	D	103.	D	104.	D	105.	D
106.	в	107.	D	108.	D	109.	в	110.	Α
111.	D	112.	в	113.	в	114.	Α	115.	в
116.	D	117.	с	118.	в				

1)
If X(Z) is the z-transform of
$$x[n] = \left(\frac{1}{2}\right)^{|n|}$$
 the ROC of X(z) is

[A]|z|>2[C] $\frac{1}{2} < |z| < 2$

[B] |z|<2 [D]the entire z-plane

2) The two sided Laplace transform of $x(t) = e^{-3t}u(t) + e^{2t}u(-t)$

 $[B] X(s) = \frac{-5}{s^2 + s - 6}, -2 < \sigma < 3$ $[D] X(s) = \frac{-5}{s^2 + s - 6}, -2 < \sigma < 3$

$$\begin{split} \left[\mathbf{B} \right] X(z) &= \frac{2z^2}{(z)^2 + 1}, \ ROC \ is \ |z| > \frac{1}{2} \\ \left[\mathbf{D} \right] X(z) &= \frac{2z^2}{(z)^2 + 1}, \ ROC \ is \ |z| > 1 \end{split}$$

 $[\mathbf{B}]\frac{(s+\alpha)}{(s-\alpha)^2+\alpha^2}$

 $[B] 2e^{-t} + e^{-3t}$ $[D]e^{-t} + e^{-3t}$

[D]None of the above

2 Marks DRDO-ECE/TCE-2009()

2 Marks ()

2 Marks DRDO-ECE/TCE-2008()

3) The z-transform X(z) of a sequence x[n] is given by $X(z) = \frac{z^{3/2}}{z^{3/2}}$

$$A(z) = \frac{1}{(z-\frac{1}{2})(z-2)(z+3)}$$

$$\begin{split} \mathbf{[A]} \, X(s) &= \frac{-5}{s^2 + s - 6}, -3 < \sigma < 2 \\ \mathbf{[C]} X(s) &= \frac{-5}{s^2 + s - 6}, -3 < \sigma < -2 \end{split}$$

If X(z) converges for |z|=1 then x[-18] is

$$\begin{bmatrix} A \end{bmatrix} -\frac{1}{9} \\ \begin{bmatrix} C \end{bmatrix} -\frac{1}{10} \\ \begin{bmatrix} B \end{bmatrix} -\frac{2}{21} \\ \begin{bmatrix} D \end{bmatrix} -\frac{2}{27} \\ \begin{bmatrix} D \end{bmatrix} -\frac{2$$

4) The z-transform X(z) of a real and right sided sequences x[n] has exactly two poles and one of them is at $z = e^{i\pi/2}$ and there are two zeroes at the origin . If X(1) = 1, which one of the following is TRUE? ² Marks DRDO-ECE/TCE-2009()

$[A] X(z) = \frac{2z^2}{(z-1)^2 + 2}, Re$ $[C] X(z) = \frac{2z^2}{(z-1)^2 + 2}, Re$	$OC \ is\frac{1}{2} < z < 1$
$[\mathbf{C}]X(z) = \frac{2z^2}{(z-1)^2 + 2}, \ Re$	$OC \ is \ z > 1$

5) The Fourier Transform of $e^{\alpha t} \cos (\alpha t)$ is equal to

$$\begin{split} & [\mathsf{A}] \frac{(s-\alpha)}{(s-\alpha)^2 + \alpha^2} \\ & [\mathsf{C}] \frac{1}{(s-\alpha)^2} \end{split}$$

6) $The inverse Laplace transform of the <math>\overline{(s+1)(s+3)}$ is

$$[A] 2e^{-t} - e^{-3t}$$

 $[C] e^{-t} - 2e^{-3t}$

7) Which of the following Derichlets conditions are correct for convergence of Fourier transform of the function x(t)?

1. x(t) is square integrable

2. x(t) must be periodic

3. x(t) should have finite number of maxima and minima within any finite interval

4. x(t) should have finite number of discontinuities within any finite interval

[A] 1 , 2 , 3 and 4 only	[B]1,2 and 4 only
[C]1, 3 and 4 only	[D]2, 3 and 4 only

8) If f(t) is a real and odd function, then its Fourier transform F($\,$) will be

[A]real and even function of ω	[B] real and odd function of ω
[C]imaginary and odd function of ω	[D]imaginary function of

9) For certain sequences which are neither absolutely summable nor square summable, it is possible to have a Fourier Transform (FT) representation if we

[A] take short time FT	[B] evaluate FT only the real part of the sequence
[C]allowDTFT to contain impulses	[D]evaluate FT over a limited time span

2 Marks GATE-ECE/TCE-1997()

2 Marks GATE-ECE/TCE-1996()

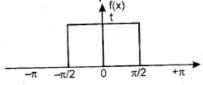
1 Marks IES-ECE/TCE-2013()

1 Marks IES-ECE/TCE-2013()

10) A unit impulse function $\delta(t)$ is defined by $1.\delta^{(t)}_{\ell\infty} = 0$ for all t except t = 0 $\delta(t)$ =1 The Fourier transform F(ω) of $\delta(t)$ is 1 Marks IES-ECE/TCE-2013() [A]1 [B]1 / w [C]0 [D]1 / jω 11) if the z – transform of x(n) is $x(z) = \frac{z(8z-7)}{4z^2 - 7z + 3}$, then the $\lim_{n \to \infty} x(n)$ is 1 Marks IES-ECE/TCE-2013() [A]1 [B] 2 [C]∞ [D]0 12) For the discrete signal $x[n] = a^n u[n]$ the z – transform is 1 Marks IES-ECE/TCE-2013() [A]z / z+a[B]z-a / z [D]z / z-a [C]z / a If the power spectral density is $\frac{\eta}{2} \frac{W}{Hz}$ and the auto correlation function is defined by $R(\tau) = \frac{\eta}{2} \int_{-\infty}^{\infty} e^{j\omega\tau} df$ 13) The integral on the right represents the Fourier transform of 1 Marks IES-ECE/TCE-2013() [A] Delta function [B] Step function [C]Rampfunction [D]Sinusoidal function 14) Laplace transform for the function $f(x) = \cosh(ax)$ is 2 Marks GATE-CE-2009() $[B] \frac{s}{s^2 - a^2}$ $[D] \frac{s}{s^2 + a^2}$ $[A] \frac{a}{s^2 - a^2}$ $[C] \frac{a}{s^2 + a^2}$ $[C]_{s^{2} + a^{2}}^{dv}$ $[C]_{s^{2} + a^{2}}^{dv}$ Transformation to linear form by substituting $v = y^{1-n}$ of the equation $\frac{dy}{dt} + p(t)y = q(t)y^{n}; n > 0$ will be
2 Marks GATE-CE-2005() $[B]_{dt}^{dv} + (1-n)pv = (1+n)q$ 15)
$$\begin{split} \mathbf{[A]} \frac{\mathrm{d}v}{\mathrm{d}t} + (1-n)pv &= (1-n)q\\ \mathbf{[C]} \frac{\mathrm{d}v}{\mathrm{d}t} + (1+n)pv &= (1-n)q \end{split}$$
 $\begin{aligned} \mathbf{[B]} \frac{\mathrm{d}v}{\mathrm{d}t} + (1-n)pv &= (1+n)q\\ \mathbf{[D]} \frac{\mathrm{d}v}{\mathrm{d}t} + (1+n)pv &= (1+n)q \end{aligned}$ 16) If L defines the Laplace Transform of a function, L [sin (at)] will be equal to 2 Marks GATE-CE-2003() $[A] a/(s^2 - a^2)$ $[B]a/(s^2 + a^2)$ $[C]s/(s^2 + a^2)$ [D] $s/(s^2 - a^2)$ 17) The Fourier series expansion of a symmetric and even function, f(x) where $f(x)=1+(2X/\pi), \ -\pi < x < 0$ $= 1 - (2X/\pi), \ 0 < x < \pi$ willbe 2 Marks GATE-CE-2003() $[A] \sum_{\substack{n \equiv 1 \\ \infty}}^{\infty} (4/\pi^2 n^2) (1 + \cos n\pi) \\ [C] \sum_{n=1}^{\infty} (4/\pi^2 n^2) (1 - \sin n\pi)$
$$\begin{split} & [\mathbf{B}]\sum_{\substack{n\equiv 1\\ n\equiv 1}}^{\infty}(4/\pi^2n^2)(1-cosn\pi)\\ & [\mathbf{D}]\!\!\sum_{n=1}^{\infty}(4/\pi^2n^2)(1+sinn\pi) \end{split}$$
18) List of the following series as x approaches $\frac{\pi}{2}$ is $f(x) = x - \frac{x^3}{3!} + \frac{x^9}{5!} - \frac{x}{7!}$ 1 Marks GATE-CE-2001() [A] $\frac{2\pi}{3}$ $[B]\overline{2}$ [C]3 [D]1 19) The Laplace Transform of the following function is $f(t) = \begin{cases} sint \text{ for } 0 \le t \le \pi \\ 0 \text{ for } t > \pi \end{cases}$

2 Marks GATE-CE-2002()

2 Marks GATE-CE-2001()


$$[A] \frac{1}{1+s^2} \text{ for all } s > 0$$

$$[C] \frac{1+e^{-\pi s}}{1+s^2} \text{ for all } s > 0$$

20)

The inverse Laplace Transform of $\overline{(s^2 + 2s)}$ is

$$[A](1 - e^{-2t})$$
$$[C]\frac{(1 - e^{+2t})}{2}$$

21) A function with a period^{2π} is shown below.

The Fourier series for this function is given by

$$[\mathbf{A}] f(x) = \frac{1}{2} + \sum_{n=l}^{\infty} \frac{2}{n\pi} \sin \frac{n\pi}{2}$$
$$[\mathbf{C}] f(x) = \sum_{n=l}^{\infty} \frac{2}{n\pi} \sin \frac{n\pi}{2}$$

22) The Laplace transform of the function

f(t) = k, 0 < t < c = 0,c <t < is

 $[A]\frac{k}{s}e^{-\infty}$

[C]ke^{∞}

23) Let $\pounds F(s) = \pounds [If(t)]$ denote the Laplac transform of the function f(t). Which of the following statements is correct? 2 Marks GATE-CE-2000()

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} \pounds \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \vdots & \pounds \int_{0}^{t} f(\tau) d\tau = sF(s) - f(o) \\ \begin{bmatrix} \mathbf{B} \end{bmatrix} \pounds \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = sF(s) - F(0) \\ \vdots & \pounds \begin{bmatrix} \int_{0}^{t} f(\tau) d\tau \end{bmatrix} = -\frac{\mathrm{d} F}{\mathrm{d} s} \\ \begin{bmatrix} \mathbf{C} \end{bmatrix} \pounds \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = sF(s) - F(0) \\ \vdots & \pounds \begin{bmatrix} \int_{0}^{t} f(\tau) d\tau \end{bmatrix} = F(s - a) \\ \begin{bmatrix} \mathbf{D} \end{bmatrix} \pounds \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = sF(s) - F(0) \\ \vdots & \pounds \begin{bmatrix} \int_{0}^{t} f(\tau) d\tau \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \mathbf{C} \end{bmatrix} \pounds \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = sF(s) - F(0) \\ \vdots & \pounds \begin{bmatrix} \int_{0}^{t} f(\tau) d\tau \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \mathbf{C} \end{bmatrix} \pounds \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = sF(s) - F(0) \\ \vdots & \pounds \begin{bmatrix} \int_{0}^{t} f(\tau) d\tau \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \mathbf{C} \end{bmatrix} \pounds \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = sF(s) - F(0) \\ \vdots & \pounds \begin{bmatrix} \int_{0}^{t} f(\tau) d\tau \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \mathbf{C} \end{bmatrix} \pounds \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = sF(s) - F(0) \\ \vdots & \pounds \begin{bmatrix} \int_{0}^{t} f(\tau) d\tau \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \mathbf{C} \end{bmatrix} \pounds \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = sF(s) - F(0) \\ \vdots & \pounds \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = sF(s) - F(0) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} = \frac{1}{s} F(s) \\ \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{d} f}{\mathrm{d} t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac$$

24) The Laplace Transform of a unit step function $u_o(t) = \{0 \ for \ 1 < a \}$

 $= \{1 \ for \ t > a$

 ${\rm [A]}\,e^{-\alpha s}/s$ $[B]_{se^{-\alpha s}}$ [C]s - u(0) $\left[\mathsf{D} s e^{-\alpha s} - 1\right]$

25) If the unilateral Laplace transform X(s) of a signal x(t) is $\frac{7s+10}{s(s+2)}$, then the initial and final values of the signal would be respectively. 1

[A] 3.5 and 5		[B]zero and 7	
[C]5 and zero		[D]7 and 5	
6) The Fourier transform of a signal	$x(t) = e^{-4 t }$ is		

26) The Fourier transform of a signal x(v). IS

[A] $8/(16 + \omega^2)$ [B] $-8/(16 - \omega^2)$ [D] $-4/(16 + \omega^2)$ $[C]4/(16 + \omega^2)$ $\left|\frac{z-a}{z+a}\right| = 1(Re \ a \neq 0)$ 27) The region of the z plane for which is

[A]x-axis [C]The straight line z = |a| [B]y-axis [D]None of the above 1 Marks GATE-CE-2000()

2 Marks GATE-CE-1999()

1 Marks GATE-CE-1998()

Marks ISRO-ECE/TCE-2010()

2 Marks ISRO-ECE/TCE-2007()

2

 $[B]f(x) = \sum_{\substack{n \equiv l}}^{\infty} \frac{2}{n\pi} \sin \frac{n\pi}{2} \cos nx$ $[D]f(x) = \sum_{n=l}^{\infty} \frac{2}{n\pi} \sin \frac{n\pi}{2} \sin nx$

$$\begin{bmatrix} \mathsf{B} \end{bmatrix}_{s}^{k} e^{\infty} \\ \begin{bmatrix} \mathsf{D} \end{bmatrix} \left(\frac{k}{s} \right) (1 - e^{\infty})$$

 $\begin{array}{l} [\mathsf{B}] \frac{1}{1+s^2} \text{ for all } s < \pi \\ e^{-\pi s} \end{array} \\ [\mathsf{D}] \frac{1}{1+s^2} \text{ for all } s > 0 \end{array}$

 $[B] \frac{(1 + e^{+2t})}{2} \\ [D] \frac{(1 - e^{-2t})}{2}$

28) Laplace transform of $t^2 + 2t + 3$ is		
$[A] \frac{-2}{3} - \frac{2}{3} - \frac{3}{3}$		ECE/TCE-2007()
$[A] \frac{-2}{s^3} - \frac{2}{s^2} - \frac{3}{s}$ $[C] \frac{2}{s^3} + \frac{2}{s^2} + \frac{3}{s}$	$[B]\frac{2}{s^3} + \frac{2}{s^2} - \frac{3}{s}$ $[D]\frac{-2}{s^3} + \frac{2}{s^2} - \frac{3}{s}$	
29) The constant term in the Fourier expansion of f(x) if	3 3 3	
	= 2 - x , 0 < x < 2	1 Marks ()
[A] 2	[B] - 2 [D]1/2	
[C] 1 30) If Fourier Transform of F(x) is f(s) then the Fourier Tra	/	
$[A]e^{ias}f(s)$	[B] $e^{-ias}f(s)$	1 Marks ()
[C]1/a f(s/a)	[D]1/a f(a/s)	
31) The Fourier Series of f(x) if $f(x) = 1$ $0 < x < \pi$ = 0 $\pi < x < 2\pi$	is	
$1 0 \infty$ ain an	1 d [∞] sin un	2 Marks ()
$[\mathbf{A}]\frac{1}{2} - \frac{2}{\pi} \sum_{n \equiv 1}^{\infty} \frac{\sin nx}{n}$	$[\mathbf{B}]\frac{1}{2} - \frac{4}{\pi} \sum_{n \equiv 1}^{\infty} \frac{\sin nx}{n}$ $[\mathbf{D}]\frac{1}{2} - \frac{4}{\pi} \sum_{n = 1}^{\infty} \frac{\cos nx}{n}$	
$[\mathbf{C}]\frac{1}{2} - \frac{2}{\pi} \sum_{n=1}^{\pi} \frac{-n}{n}$	$[D]\frac{1}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos nx}{n}$	
32) The Laplace Transform of $\frac{sin ht}{t}$ is		
$[\mathbf{A}]\frac{1}{2}\log\left(\frac{S+1}{S-1}\right)$	$[\mathbf{B}] \frac{1}{2} \log \left(\frac{S-1}{S-1} \right)$	2 Marks ()
$[C]_{\frac{1}{4}}^{\frac{1}{2}} \log \left(\frac{S^2 + 1}{S^2 - 1} \right)$	$[\mathbf{B}]\frac{1}{2}\log\left(\frac{S-1}{S+1}\right)$ $[\mathbf{D}]\frac{1}{4}\log\left(\frac{S^2-1}{S^2+1}\right)$	
33) The Z-transform of $2^n . Sin(n\pi/2)$ is	4 (5 + 1)	
$[A] \frac{2z}{(4Z^2+1)}$	$[B]\frac{2z}{(Z^2+4)}$	2 Marks ()
$[C] \frac{2z}{(4Z^2 - 1)}$	$[B] \frac{2z}{(Z^2 + 4)} \\ [D] \frac{2z}{(Z^2 - 4)}$	
34) The Laplace Transform of t sint is		1 Marka (
$[A] \frac{-2s}{(s^2+1)^2} \\ [C] \frac{2s^2}{(s^2+1)^2}$	$[B] \frac{2s}{(s^2+1)^2} \\ [D] \frac{-2s^2}{(s^2+1)^2}$	1 Marks()
$[C] \frac{2s^2}{(s^2+1)^2}$	$[D] \frac{-2s^2}{(s^2+1)^2}$	
35) Z-Transform of $n.z^n$ is		1 Marks ()
$[A] \frac{2z}{(z-2)^2}$	$[B] \frac{2z}{(2z-1)^2}$	
$[C]\frac{4z}{(z-2)^2}$	$[D]\frac{z}{(2z-1)^2}$	$n\pi x$
36) The half range cosine series of $f(x) = x$ in the interval $a_{1=}$	(0,2) is given by $f(x) = \frac{1}{2} + \sum a_n \cos \left(\frac{1}{2} + \frac{1}{2} $	$\frac{1}{2}$ then
[A] 0	$[B] \frac{-2}{-2}$	2 Marks ()
$[C] \frac{4}{\pi^2}$	$[B]\frac{\frac{-2}{\pi^2}}{[D]\frac{-8}{\pi^2}}$	
37) The Inverse Laplace Transform of $\frac{1}{(s+2)^2}$ is		
		2 Marks ()
[A] $t^2 e^{-2t}$ [C] $t e^{2t}$	[B] te ^{-2t} [D]	
(e^{-2t}/t)		

[B] 5/2 [C]5 [D]10

49) The differential equation $dx/dt = (1-x)/\tau$ is discretised using Euler's numerical integration method with a time step $\Delta T > 0$. What is the maximum permissible value of ΔT to ensure stability of the solution of the corresponding discrete time equation? 2 Marks GATE-EEE-2007() [A]1 $[B]\tau/2$ [C]τ [D]_{2 т} 50) The bisection method is applied to compute a zero of the function $f(x) = x^4 - x^3 - x^2 - 4$ in the interval [1,9]. The method converges to a solution after_____ iterations. 2 Marks GATE-CSE/IT-2012() [A]1 [B] 3 [C]5 [D]7 $\int_{51}^{[C]5} \frac{\omega}{S^2 + \omega^2}$, then the value of $\int_{\infty}^{\infty} f(t)$ 2 Marks GATE-ECE/TCE-1998() [A] Cannot be dertermined [B]is zero [C] is unity [D]is infinite 52) The trigonometric Fourier series of a periodic time function can have only 2 Marks GATE-ECE/TCE-1998() [A] cosine terms [B]sine terms [C]cosine and sine terms [D]d.c. and cosine terms 53) The following $e^{-3t}(2 \cos 5t - 3 \sin 5t)$ of Laplace transform is 1 Marks () $[A] \frac{2s - 9}{s^2 + 6s + 34}$ $[C] \frac{1}{s^3 + 6s + 34}$ $[B]\frac{1}{s^{2}+6s+34}$ $[D]\frac{1}{s^{3}+6s+34}$ 1 F.S.T of *x* 54) 1 Marks () $[A]\sqrt{\frac{2}{\pi}}$ $[B] \sqrt{\frac{\pi}{2}}$ $[D]_{\pi}^{2}$ [C]² 55) If $Z \{u_n\} = \frac{z^2 - 3z + 4}{(z - 3)^3}$ for |z| < 3, then u_3 is 2 Marks () [A]1 [B] 0 [C]3 [D]2 56) If $u_n = 2^n$; n < 0 = 3^n ; $n \ge 0$, then ROC is 1 Marks () [A] 2 < |z| < 3[B]|z| > 0[C]|z| ≥ 3 [D]Does not exist 57) Apply the transform to $L\{t J_1(t)\}$ is 1 Marks () $[A] \frac{5}{(s^2+1)^{3/2}} \\ [C] \frac{s}{(s^2+1)^{3/2}}$ $[B] \frac{1}{(s^2+1)^{3/2}} \\ [D] \frac{1}{(s^2+2)^{3/2}}$ 58) $\int_{0}^{\infty} f(x)\sin tx \, dx = \begin{cases} 1 & ; 0 \le t \le 1 \\ 2 & ; 1 \le t \le 2 \\ 0 & ; t \ge 2 \end{cases}$ then find f(x)? 2 Marks () $\begin{bmatrix} A \end{bmatrix} \frac{2}{\pi} \left[\frac{-\cos x}{x} + \frac{1}{x} - \frac{2\cos 2x}{x} - \frac{2\cos x}{x} \right]$ $\begin{bmatrix} C \end{bmatrix} \frac{2}{\pi} \left[\frac{1}{x} - \frac{2\cos 2x}{x} - \frac{3\cos x}{x} \right]$ $[\mathbf{B}]\frac{2}{\pi} \left[\frac{-\cos x}{x} + \frac{1}{x} - \frac{2\cos 2x}{x} + \frac{2\cos x}{x}\right]$ $[\mathbf{D}]\frac{2}{\pi} \left[\frac{-\cos x}{x} + \frac{1}{x} + \frac{2\cos 2x}{x} + \frac{2\cos x}{x}\right]$

59) What is answer of this equation $\int_0^\infty t \ e^{-3t} \ sint \ dt$ is		
$[A]\frac{1}{50}$ $[C]\frac{3}{50}$	$[B]\frac{3}{60}$	1 Marks()
50	[D] ² / ₂₅	
$60)_{z^{-1}}\left[\frac{z}{(z-1)^2}\right]$ is		
[A]u(n)	[B] $n^2 u(n)$	2 Marks ()
[C]nu(n)	$[D]^{n^{-2}u(n)}$	
61) Solve the following function $L rac{1}{t} \delta(t-a)$		2 Marka ()
$[A]\frac{1}{a}e^{-as}$	$[B]\frac{1}{as}e^{-as}$	2 Marks ()
$[A]_{a}^{\frac{1}{e}e^{-as}}$ $[C]_{a}^{\frac{5}{e}e^{-as}}$	$[B] \frac{1}{as} e^{-as}$ $[D] \frac{2s}{a} e^{-as}$	
62) ^{aⁿ} * a ⁿ =		
[A](n+1)u(n)	$[B] a^n (n+1) u(n)$	1 Marks ()
$\begin{bmatrix} \mathbf{C} \end{bmatrix} a^n u(n)$	[D]u(n)	
$63) \int_0^\infty \frac{x^2}{(x^2 + a^2)^2} dx = ?$		
$[A]^{\frac{\pi}{2}}$	$[B]\frac{\pi}{a}$	2 Marks ()
$[C]^{\frac{n}{2a}}$	[D] <u>4a</u>	
⁶⁴⁾ What is inverse Fourier transform of s^{s+2}		
$[A]^{e^{2t}}\cos 3t + \frac{4}{3}e^{2t}\sin 3t$	$[B]e^{2t} \sin 3t + \frac{4}{3}e^{2t} \cos 3t$	2 Marks ()
$[\mathbf{C}]^{e^{2t}} \sin 2t + \frac{4}{3} e^{2t} \cos 3t$	$[D]e^{2t} \cos 2t + \frac{4}{3}e^{2t} \sin 2t$	
⁶⁵⁾ The voltage across an impedance in a network is V transforms of the corresponding time function v (i (t). The voltage v (t) is:		e the Laplace
$[A]V(t) = Z(t) \cdot V(t)$	$[\mathbf{B}]V(t) = \int_0^1 i(t) . z(t-\tau) d\tau$	2 Marks GATE-ME-1991()
$\begin{bmatrix} \mathbf{C} \end{bmatrix}^{V}(t) = \int_0^1 i(t).z(t+\tau)d\tau$	$[D]V(t) = y_0 (t) \cdot z(t - t) dt$ [D]V(t) = z(t) + i(t)	
66) $(s+1)^{-2}$ is the Laplace transform of		
$[A] t^2$	[B] <i>t</i> ³	1 Marks GATE-ME-1998()
[C] <i>e</i> ^{-2<i>t</i>}	$[D]te^{-t}$	
⁶⁷⁾ Laplace transform of $(a + bt)^2$ where 'a' and 'b' are con	stants is given by	1 Marks GATE-ME-1999()
$[A](a + bs)^2$	$[B]\frac{1}{(a+bs)^2}$	·
$[C]\frac{a^2}{s} + \frac{2ab}{s^2} + \frac{2b^2}{s^3}$	$[B] \frac{1}{(a+bs)^2} \\ [D] \frac{a^2}{s} + \frac{2ab}{s^2} + \frac{b^2}{s^3}$	
⁶⁸⁾ The Laplace transform of the function <i>sin²2t</i> , is	5 5 5	
$[A]\left[\frac{1}{2s} - \frac{s}{2(s^2 + 16)}\right]$	[B] $\frac{s}{s^2 + 16}$	2 Marks GATE-ME-2000()
$[A]\left[\frac{1}{2s} - \frac{s}{2(s^2 + 16)}\right]$ $[C]\frac{1}{s} - \frac{s}{(s^2 + 4)}$	[D] $\frac{s}{s^2+4}$	
⁶⁹⁾ Laplace transform of the function sin t is		
$[A]\frac{s}{s^2+\omega^2}$	$[B] \frac{\omega}{s^2 + \omega^2}$	2 Marks GATE-ME-2003()
$[C]\overline{s^2 - \omega^2}$	$[D]_{\overline{s^2 - \omega^2}}^{\omega}$	

⁷⁰⁾ The Laplace transform of a function f(t) is $\frac{1}{s^{2}(s+1)}$. The function f(t) is

2 Marks GATE-ME-2010() $[A]t - 1 + e^{-t}$ $[B]t + 1 + e^{-t}$ [D]2t +e^t $[C]-1 + e^{-t}$ $F(s) = \frac{1}{s(s+1)}$ is given by 71) The inverse Laplace transform of the function 2 Marks GATE-ME-2012() [A] f(t) = sin t $[B]f(t) = e^{-t}sin t$ $[C]f(t) = e^{-t}$ [D]f(t) 1 -e-t 72) 1 The inverse Laplace transform of $\overline{(s^2 + s)}$ is 1 Marks GATE-ME-2009() $[A] 1 + e^{t}$ [B]1 -e^t $[C]] - e^{-t}$ $[D]1 + e^{-t}$ ⁷³⁾ A delayed unit step function is defined as $u(t-a) = \begin{cases} \\ 1 \text{ for } t \ge a \end{cases}$ Its Laplace transform is 2 Marks GATE-ME-2004() $[B] \frac{e^{-as}}{e^{\frac{as}{s}}}$ $[D] \frac{1}{a}$ [A] a.e-as $[C] \frac{e^{as}}{s}$ 74) Eigenvalues of a matrix $S = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$ are 5 and 1. What are the eigenvalues of the matrix =SS? 2 Marks GATE-ME-2006() [A] 1 and 25 [B] 6 and 4 [D]2 and 10 [C]5 and 1 ⁷⁵⁾ If F(s) is the Laplace transform of function f(t), then Laplace transform of $\int_0^t f(\tau) d\tau$ is 2 Marks GATE-ME-2007() [B] 1 / s F(s) - f(0) [A]1/sF(s) [C]sF(s) - f(0) $[D] \int F(s) ds$ 76) Given $f(t) = L^{-1} \left[\frac{3s+1}{s^3 + 4s^2 + (k-3)s} \right] \prod_{t \to \infty} f(t) = 1$ then value of "K" is 2 Marks () [A]4 [B] 2 [D]1 [C]3 77) If $x[n] = (1/3)^{|n|} - (1/2)^n u[n]$, then the region of convergence (ROC) of its Z-transform in the Z-plane will be 1 Marks GATE-ECE/TCE-2012,GATE-EEE-2012()
$$\begin{split} \mathbf{[B]} \frac{1}{3} < |z| < \frac{1}{2} \\ \mathbf{[D]} \frac{1}{3} < |z| \end{split}$$
 $[A]\frac{1}{3} < |z| < 3$ $[C]\frac{1}{2} < |z| < 3$

Key Pape	r								
1.	C	2.	A	3.	В	4.	D	5.	А
6.	А	7.	с	8.	с	9.	с	10.	Α
11.	A	12.	D	13.	Α	14.	в	15.	Α
16.	в	17.	в	18.	D	19.	с	20.	D
21.	Α	22.	D	23.	D	24.	Α	25.	D
26.	Α	27.	в	28.	с	29.	с	30.	в
31.	Α	32.	Α	33.	в	34.	в	35.	Α
36.	D	37.	в	38.	с	39.	Α	40.	Α
41.	D	42.	В	43.	Α	44.	В	45.	Α
46.	Α	47.	Α	48.	в	49.	D	50.	в
51.	Α	52.	D	53.	Α	54.	в	55.	в
56.	D	57.	в	58.	в	59.	с	60.	с
61.	Α	62.	в	63.	D	64.	Α	65.	Α
66.	D	67.	с	68.	Α	69.	в	70.	Α
71.	D	72.	с	73.	в	74.	Α	75.	Α
76.	Α	77.	с						